Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films

Slides:



Advertisements
Similar presentations
Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Advertisements

-CoFe 2 O 4 nanocomposite films Magnetic Properties of BaTiO 3 -CoFe 2 O 4 nanocomposite films :::: Grupo FCD :::: Centro de Física da Universidade do.
Heat Generation in Electronics Thermal Management of Electronics Reference: San José State University Mechanical Engineering Department.
Impedance Spectroscopy (Or, how a sinusoidally varying voltage is used to probe multiple electrical properties of materials) Yun-Ju (Alex) Lee June 13,
Anodic Aluminum Oxide.
IMPEDANCE SPECTROSCOPY: DIELECTRIC BEHAVIOUR OF POLYMER ELECTROLYTES
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS): A TOOL FOR THE CHARACTERIZATION OF SPUTTERED NIOBIUM FILMS M. Musiani Istituto per l’Energetica e le Interfasi,
Analysis of nanostructural layers using low frequency impedance spectroscopy Hans G. L. Coster Part 3: Phenomenological Impedances.
Dielectro-Rheological Device (DRD)
Electrical Techniques MSN506 notes. Electrical characterization Electronic properties of materials are closely related to the structure of the material.
Montserrat García del Muro, Miroslavna Kovylina, Xavier Batlle and
Impedance spectroscopy - with emphasis on applications towards grain boundaries and electrodics Harald Fjeld Department of Chemistry, University of Oslo,
Application of Impedance Spectroscopy to characterise grain boundary and surface layer effects in electroceramics. Derek C Sinclair Department of Engineering.
Epitaxial Growth of Ferroelectric Titanate Layers by Sol-Gel Routes Muhammad Salameh Prof. Eric P. Kvam.
Hydrothermal Processing of Ba X Sr (1-X) TiO 3 Presented By: Adam Chamberlain Advisors: Elliot Slamovich Mark McCormick.
Magnetic sensors and logic gates Ling Zhou EE698A.
Chapter 20: Circuits Current and EMF Ohm’s Law and Resistance
Magnetoelastic Coupling and Domain Reconstruction in La 0.7 Sr 0.3 MnO 3 Thin Films Epitaxially Grown on SrTiO 3 D. A. Mota IFIMUP and IN-Institute of.
( electrochemical impedance spectroscopy, EIS)
In conclusion, there are two requirements which must be met in order to establish an electric circuit. The requirements are: 1.There must.
1 Basics of Microwave Measurements Steven Anlage
Temperature-Dependent Electrical Characterization of Multiferroic BFO Thin Films Danielle Hitchen, Sid Ghosh, K. Hassan, K. Banerjee, J. Huang Electrical.
Piezoelectric Equations and Constants
Gavin W Morley Department of Physics University of Warwick Diamond Science & Technology Centre for Doctoral Training, MSc course Module 2 – Properties.
Multiferroic Thin Films Nanoscience Symposium 2006 June 15 By: Arramel RuGRuG.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Chemical and Materials Engineering Department, University of Cincinnati, Cincinnati, OH Nanoscale Ni/NiO films for electrode and electrochemical Devices.
University of Wisconsin-Madison Department of Materials Science and Engineering Opportunities for Coherent Scattering in Ferroelectrics and Multiferroics.
ELEC 3105 Basic EM and Power Engineering Conductivity / Resistivity Current Flow Resistance Capacitance Boundary conditions.
Introduction to Electrochemical Impedance Spectroscopy (EIS)
5 장 Dielectrics and Insulators. Preface ‘ Ceramic dielectrics and insulators ’ is a wide-ranging and complex topic embracing many types of ceramic, physical.
Thermoelastic dissipation in inhomogeneous media: loss measurements and thermal noise in coated test masses Sheila Rowan, Marty Fejer and LSC Coating collaboration.
Ho-Gun Kim, Seung-Ho Ahn, Jung-Gu Kim, *Se-Jun Park, *Kwang-Ryol Lee, **Rizhi Wang SungKyunKwan University, Korea *Korea Institute of Science and Technology,
Spin-diffusion, T c suppression and proximity effect in ferromagnet/superconductor (LCMO/YBCO) bilayers and trilayers Norbert M. Nemes Seminario Alternativo,
1 ELECTRICAL TECHNOLOGY EET 103/4 Define and analyze the principle of transformer, its parameters and structure. Describe and analyze Ideal transformer,
Properties of the bakelite used for standard RPC chambers as a function of the operating temperature F. Bruni – G. Hull – S.M. Mari 4 digital thermometers.
Capacitors AC Circuits I. Capacitors and Capacitance: An Overview Capacitance – the ability of a component to store energy in the form of an electrostatic.
Ajaya Kumar Kavala Research Scholar Department of Physics IIT Patna Technique for measuring the Dielectric constant using open ended coaxial cable in the.
Conclusion Room- temperature ferrimagnet with large magnetism P. S. Wang, H. J. Xiang* Key Laboratory of Computational Physical Sciences (Ministry of Education),
CROSSTALK, Copyright F. Canavero, R. Fantino Licensed to HDT - High Design Technology.
CH5715 Energy Conversion and Storage
ELEC 3105 Basic EM and Power Engineering
Impedance Spectroscopy on Multiferroic BiFeO3 Epitaxial Thin Films
Image © NPG Rogério de Sousa
Advances in Electroluminescent Devices with Barium Titanate Particles
Impedance spectroscopy of nickel manganite NiMn2O4
Effects of sintering temperature on the physical and
Capacitance and Dielectrics
Dielectric response to the spin state transition in LaCoO3-d Ceramics
Low Temperature Impedance of Multiferroic BiMnO3 Thin Films
CAPACITANCE SENSOR.
Universidad Complutense de Madrid, Departamento Física Aplicada III
R Schmidt1, W Eerenstein1, F D Morrison2, P A Midgley1
J. Appl. Phys. 112, (2012); Scanning Tunneling Microscopy/Spectroscopy Studies of Resistive Switching in Nb-doped.
High pressure synthesis of lone-pair
The 9th international Conference for Basic Sciences
Rainer Schmidt 1 Jungho Ryu 2 Dong-Soo Park 2
Multiferroics as Data Storage Elements
Universidad Complutense de Madrid, Departamento Física Aplicada III, GFMC Rainer Schmidt Microstructure and dielectric properties of CaCu3Ti4O12 (CCTO)
Impedance Spectroscopy on Nano-sized Multiferroic Thin Films
Non-stoichiometry in CaCu3Ti4O12 (CCTO) ceramics
ECE699 – 004 Sensor Device Technology
Basic Electromagnetics
(Research Project Title) Project Coordinator Name: MSL Faculties:
Emergence of room-temperature ferroelectricity at reduced dimensions
by J. Wang, A. Scholl, H. Zheng, S. B. Ogale, D. Viehland, D. G
Electrochemical Impedance Spectroscopy Mr.Halavath Ramesh 16-MCH-001 Department of Chemistry Loyola College –Chennai. University of Madras.
Joon Yang MSE Department Advisor L. Salamanca-Riba MRSEC – IRG 2
Presentation transcript:

Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films Universidad Complutense de Madrid, Departmento de Fisicas Aplicadas III Rainer Schmidt Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films Rainer Schmidt, Jofre Ventura, Eric Langenberg, Manuel Varela Grupo de Estructuras en Capa Fina para la Espintrónica Universidad Complutense de Madrid Departamento Fisica Aplicada III & Instituto de Ciencia de Materiales de Madrid (ICMM) Universitat de Barcelona Departamento Fisica Aplicada i Óptica Barcelona C17- 14. June 2011

Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films Universidad Complutense de Madrid, Departmento de Fisicas Aplicadas III Rainer Schmidt Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films Part One: Principals of Impedance Spectroscopy Part Two: Magneto-Impedance in Multiferroic BiMnO3 and BiFeO3 Thin Films

Impedance Analyzer (Hewlett Packard 4192A) Principals of Impedance Spectroscopy Rainer Schmidt Impedance Analyzer (Hewlett Packard 4192A) C Heating/ Cooling Magnetic Field

Still Useful for Interface Principals of Impedance Spectroscopy Rainer Schmidt Dielectric Characterisations by Impedance Spectroscopy Well Established: Relatively New: Polycrystalline Bulk Material Resistance and Capacitance from Electrode - Sample Interface Layer Grain Boundary Areas Grain Interior Bulk Material Epitaxial Thin Films Epitaxial Layer Electrodes Waver Substrate No Grain Boundaries Still Useful for Interface and Film Separation !!! R. Schmidt et al., Phys.Rev.B 75 (2007) p.245111

Complex Relationships Principals of Impedance Spectroscopy Rainer Schmidt Complex Relationships Dielectric Permittivity – Capacitance Relationship Contact Area A Capacitance of the Measuring Cell in Vacuum d Contact Distance

Equivalent Circuit wmax R Real – and Imaginary Parts of the Impedance Principals of Impedance Spectroscopy Rainer Schmidt Equivalent Circuit ZR=R ZC=1/iwC R Real – and Imaginary Parts of the Impedance Complex Impedance Plot 106 105 104 103 102 101 100 10-1 10-2 106 105 104 103 102 101 100 10-1 10-2 1.0E5 7.5e4 5.0E4 2.5E4 wmax Z' -Z'' -Z'' Increasing Frequency R = 100 kΩ C = 10 nF 101 102 103 104 105 106 107 108 0 2.5E4 5.0E4 7.5E4 1.0E5 Frequency in Hz Z'

Equivalent Circuit IF Bulk Real Part of Capacitance Bulk IF Principals of Impedance Spectroscopy Rainer Schmidt Complex Impedance Plot Interface Bulk Equivalent Circuit IF Bulk Real Part of Capacitance IF Bulk C' Bulk IF G. Catalan, Appl. Phys. Lett. 88, 102902 (2006)

Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films Universidad Complutense de Madrid, Departmento de Fisicas Aplicadas III Rainer Schmidt Magneto-Impedance Spectroscopy of Epitaxial Multiferroic Thin Films Part One: Principals of Impedance Spectroscopy Part Two: Magneto-Impedance in Multiferroic BiMnO3 and BiFeO3 Thin Films

BiFeO3 (BFO) BiMnO3 (BMO) Ferroelectric below TCurie ~ 1125K Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt BiFeO3 (BFO) Ferroelectric below TCurie ~ 1125K Ismailzade, Phys.Status Solidi B 46 (1971) K39 Antiferromagnetic below TNeel ~ 645K Smolenskii, Yudin, Sov.Phys.JETP 16 (1963) p 622 BiMnO3 (BMO) Ferroelectric below TCurie ~ 760 K Kimura et al., Phys.Rev.B 67 (2003) R180401 Ferromagnetic below TCurie ~ 105K Chiba et al., J.Solid State Chem. 132 (1997) p 139 9

Nb-Doped STO Substrate Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt Sample Geometry Copper Wires to 1910 QuadTech LCR Meter Spring Loaded Stainless-Steel Probes Pt - Electrodes Film Thickness d: 50nm/100 nm Multiferroic Layer Nb-Doped STO Substrate r ~ 5 mΩ·cm AC Signal Current Path R. Schmidt et al., Phys.Rev.B 75 (2007) p.245111

Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt Temperature dependent dielectric Permittivity at fixed frequency BiMnO3 BiFeO3 Step near 100 – 150 K Uniform

Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt Frequency dependent dielectric permittivity at fixed temperature BiMnO3 Two capacitance plateaus: indicative of two relaxations 12

Impedance Capacitance Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt BiMnO3 magneto-impedance and magneto-capacitance at 95 K Impedance Capacitance Dielectric permittivity Clear magneto-resistance Magneto-capacitance unclear 13

BiMnO3 magneto-capacitance at fixed frequency (95 K) Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt BiMnO3 magneto-capacitance at fixed frequency (95 K) Magneto-capacitance rather small, but clear trends 14

Impedance Capacitance Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt BiMnO3 magneto-impedance and magneto-capacitance at 140 K Impedance Capacitance Dielectric permittivity No magneto-resistance No magneto-capacitance 15

BiMnO3 magneto-capacitance at fixed frequency (140 K) Impedance Spectroscopy Data: Multiferroic Thin Films Rainer Schmidt BiMnO3 magneto-capacitance at fixed frequency (140 K) No (clear) magneto-capacitance 16

Conclusions Impedance Spectroscopy is a useful tool for dielectric Conclusions Rainer Schmidt Conclusions Impedance Spectroscopy is a useful tool for dielectric characterization of multiferroic thin films The Application of a magnetic field allows discrimination of magneto-resistance and magneto-capacitance BiMnO3 shows strong magneto-resistance and weak magneto-capacitance below the magnetic transition BiMnO3 shows negligible magneto-resistance and magneto-capacitance above the magnetic transition

Random Distribution of t (Voigt Element) Impedance Spectroscopy Rainer Schmidt Ideal RC Element R C Non-Ideal RC Elements R-CPE Circuit Random Distribution of t (Voigt Element) R CPE

Complex Conductivity of an R-CPE Element R-CPE Elements and Jonscher’s law Rainer Schmidt Complex Conductivity of an R-CPE Element Using After Simplification Jonscher’s law is Obtained:

Random Gaussian Distribution of Relaxation Times Gaussian Distribution of Relaxation Times Rainer Schmidt Random Gaussian Distribution of Relaxation Times

Random Gaussian Distribution of Relaxation Times Gaussian Distribution of Relaxation Times Rainer Schmidt Random Gaussian Distribution of Relaxation Times Dt = 7.5·10-5 s s ' / s '(0) Dt = 5·10-5 s t = 1·10-4 s

Multiferroics Possess Two or More Ferroic Properties Multiferroics Rainer Schmidt Multiferroics Possess Two or More Ferroic Properties Ferro-Electrics Anti-Ferro-Electrics Ferro-Magnetics Anti-Ferro-Magnetics Ferri-Magnetics Ferro-Elastic Ferro-Toroidics ¿¿¿Coupling of ferro-magnetic order and ferro-electric polarisation??? ¿¿¿Switch ferro-magnetic domains with a magnetic field???

Magneto-Electric Effect: Coupling of Magnetic and Electric Order Multiferroics Rainer Schmidt Magneto-Electric Effect: Coupling of Magnetic and Electric Order Does it exist? (Bi2MnNiO6)4 Kleinman et al., APS March Meeting 2007, Abstract Eerenstein et al., Nature 442 (2006) p 759

Dual Read Write Mechanism Multiferroics Rainer Schmidt Potential Applications of Coupled Ferromagnetic Ferroelectrics: Dual Read(Magnetic)-Write(Electric) Mechanism in Multiferroic RAMs Multi-State Memory H uncoupled V Dual Read Write Mechanism V Magnetic Sensor coupled

Ferroelectric Polarisation Measurements Multiferroics Rainer Schmidt Ferroelectric Polarisation Measurements Measurement of the Displacement Current During Switching the Ferroelectric Domains Domains Switch at the Coercive Field EC Problem: In Real Ferroelectrics Leakage Current Contributes to the Overall Measured Current Meyer, Waser et al., Appl.Phys.Lett. 86 (2005) p 142907

Ferroelectric Polarisation Measurements Multiferroics Rainer Schmidt Ferroelectric Polarisation Measurements Remnant Polarisation Coercive Field Magnetic Field (Arbitrary) Ponomarev et al., Ferroelectrics 43-48 (2006) p 759 Tb2(MoO4)3 at 78 K Wang, Viehland, Schlom, Spaldin, Rabe, Ramesh et al., Science 299 (2003) p 1719 BiFeO3 200 nm Epitaxial Layers, Room Temperature

Magneto-Capacitance Magnetic Field (Arbitrary) Multiferroics Rainer Schmidt Magneto-Capacitance H1 H2 Magnetic Field (Arbitrary) Wang, Viehland, Schlom, Spaldin, Rabe, Ramesh et al., Science 299 (2003) p 1719 BiFeO3 200 nm Epitaxial Layers