Fragmentation and lifetime of C60q+ trapped in a cone trap

Slides:



Advertisements
Similar presentations
Mass Spectrometry Chem 3500 Mass Spectrometry Y. Zhao Lecture 2 A Glimpse of Mass Spectrometry Began from 1920s: Aston, Dempster, Thompson MS is often.
Advertisements

Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Dispersive property of a G-M tube HV - + In the proportional region a G-M tube has dispersive properties tube voltage.
12-1 Molecular Mass Spectroscopy Molecular structure Composition of mixtures Molecular mass spectra Ion Source Mass Spectrometers Applications.
electrostatic ion beam trap
Introduction to MALDI-TOF MS
P. Cheinet, B. Pelle, R. Faoro, A. Zuliani and P. Pillet Laboratoire Aimé Cotton, Orsay (France) Cold Rydberg atoms in Laboratoire Aimé Cotton 04/12/2013.
Time-resolved analysis of large amplitude collective motion in metal clusters Metal clusters : close « cousins » of nuclei Time resolved : « Pump Probe.
Secondary electron emission in proton-Uracil collision: preliminary results P.Moretto-Capelle D.Bordenave-Montesquieu A.Bordenave-Montesquieu (A.Rentenier)
Mass Spectrometry.
Molecular Mass Spectrometry
Surface and volume production of negative ions in a low-pressure plasma E. Stoffels, W.W. Stoffels, V.M. Kroutilina*, H.-E. Wagner* and J. Meichsner*,
MALDI-TOF-TOF with High Resolution Precursor Selection and Multiplexed MS-MS Poster Number ThP 618 Kevin Hayden, Stephen C. Gabeler, Mark Dahl and Marvin.
TOF Mass Spectrometer &
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
Fragmentation mechanisms for Methane induced by electron impact
New Progress of High Current Gasdynamic Ion Source
Radioactive ion beam facilities How does they work ? 2012 Student Practice in JINR Fields of Research 9.oct.2012 I. Sivacekflerovlab.jinr.ru.
X.-X. Li, H.-H. He, F.-R. Zhu, S.-Z. Chen on behalf of the ARGO-YBJ collaboration Institute of High Energy Physics Nanjing GRB Conference,Nanjing,
1 Ankit D. Mohapatra, Dr. Marcus Hohlmann Florida Institute of Technology, Melbourne, Florida Barry University, 8-9 March, 2013.
Marvin Vestal and Kevin Hayden SimulTOF Systems
abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1 ]  70% transmission SIS – FRS  ε trans transmission.
In this experiment, C 60 was photoionized with single photons with specified energies between the energy range of 37 to 160eV. The photons used came from.
J. Hasegawa, S. Hirai, H. Kita, Y. Oguri, M. Ogawa RLNR, TIT
Status on 25 Mg(n,  ) and neutron flux in 2012 Bologna, 27 November 2013 C. Massimi.
Accelerator Physics, JU, First Semester, (Saed Dababneh). 1 Electron pick-up. ~1/E What about fission fragments????? Bragg curve stochastic energy.
Rare Isotope Spectroscopic INvestigation at GSI. abrasion ablation  σ f [cm 2 ] for projectile fragmentation + fission  luminosity [atoms cm -2 s -1.
An Electrostatic Storage Ring for Low Energy Electron Collisions T J Reddish †, D R Tessier †, P Hammond *, A J Alderman *, M R Sullivan †, P A Thorn †
1 Pengqian Wang Department of Physics Western Illinois University March 4, 2013.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
WITCH - a first determination of the beta-neutrino angular correlation coefficient in 35 Ar decay S. Van Gorp, M. Breitenfeldt, V. De Leebeeck,T. Porobic,
Spatial and Energy Profiling of D-D Fusion Reactions in an IEC Fusion Device David C. Donovan D. R. Boris, G. L. Kulcinski, J. F. Santarius 11 th US-Japan.
Design and Development of a Trochoidal Mass Separator at the Berkeley Gas-filled Separator J.M. Gates, K.E. Gregorich, G.K. Pang, N.E. Esker and H. Nitsche.
Intramolecular Energy Redistribution in C 60 M. Boyle, Max Born Institute.
The experimental evidence of t+t configuration for 6 He School of Physics, Peking University G.L.Zhang Y.L.Ye.
News from J-PARC: the system, the data and the simulation code
FAST IN-MEDIUM FRAGMENTATION OF PROJECTILE NUCLEI
Dissociation of Molecular Ions Studied by
Acknowledgements Slides and animations were made by Dr. Jon Karty Mass Spectrometry Facility Indiana University, Bloomington.
Old Dominion University, Norfolk, Virginia 23529, USA
Is the caloric curve a robust signal of the phase transition
INDRA: Identification de Noyaux et Détection avec Résolutions Accrues
C70 and C60 colliding with slow highly charged ions – a comparison
Fragmentation of H2O molecule by slow, highly charged ions
Starter Complete the quiz and hand in..
P. Moretto-Capelle, A. Rentenier, D. Bordenave-Montesquieu
First results from IS468 and further investigation of in-trap decay of 62Mn First results from 2008 ; Problems and questions ; Further investigations ;
“Electron cooling device in the project NESR (FAIR)"
JYFL ION COOLER AND BUNCHER.
ROSINA, COSAC & PTOLEMY Reviewer: Heather Franz 2/15/16 – 2/17/16
Electronic Spectrum of Cryogenic Ruthenium-Tris-Bipyridine Dications
Study of SHE at the GSI – SHIP
Giorgi Veshapidze, Haruo Shiromaru Tokyo Metropolitan University
Hadronic resonances from ALICE in pp collisions
GSI-Darmstadt, Germany
Neutron Detection with MoNA LISA
p0 life time analysis: general method, updates and preliminary result
Ionization detectors ∆
DECOMPOSITION PROCESS OF BENZENE IN A LOW PRESSURE GLOW DISCHARGE
Hadronic resonances from ALICE in pp collisions
T. L. Guasco, B. M. Elliott, M. Z. Kamrath and M. A. Johnson
Rare Isotope Spectroscopic INvestigation at GSI
Backgrounds using v7 Mask in 9 Si Layers at a Muon Higgs Factory
Rare Isotope Spectroscopic INvestigation at GSI
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Daniela Henzlova GSI-Darmstadt, Germany
Binding energy Electric potential energy => Nuclear Binding energy ( a mass loss! ) What is the energy change that occurs when constituent particles come.
Update on POLA-01 measurements in Catania
Rare Isotope Spectroscopic INvestigation at GSI
Presentation transcript:

Fragmentation and lifetime of C60q+ trapped in a cone trap S. Martin J. Bernard L. Chen R. Brédy (post-doc at Kansas State Univ.) B. Wei (PHD) A. Salmoun, Marocco Laboratoire de Spectrométrie Ionique et Moléculaire Groupe des Ions Multichargés LIMBE at Ganil Nanogan at Lyon ( soon Nanogan3)

Questions 1. What is the excitation mechanism in ion-cluster collisions? 2 What is the dependance of fragmentation scheme versus the excitation energy?

OUTLINE Excitation and Capture Fragmentation channels versus the charge state of C60 Experimental set up Fragmentation for three time scales - extraction (few hundred ns) - tube( 20 µs) -Trap (up to 1 second) Lifetime measurements of C60q+ Conclusion

Excitation HCI ---> C60 HCI or A+ b << Ro Large impact parameter The same as in ion-atom collision HCI or A+ b << Ro Electronic and nuclear energies losses

How can a hot C60 lose excitation energy ? Evaporation of dimere C2 Asymetrical fission (C2+, C4+…) Multi-fragmentation (C13+, C15+)

Evaporation - Fission - Multifragmentation as a fonction of the initial charge of the C60 in the 300 ns time scale Xe30+ + C60 Xe(q-s)+ + C60r+ + n e- 1 2 3 4 5 6 7 8 9 10 1E-3 0.01 0.1 Stable Multi-fragmentation Probabilities Fission Evaporation 0.001 Initial charge states of C60

r = n + s Experimental set-up r C60 electrons s n Multi-anode Micro-channel plates r IONS ECR Source Cone Trap Channeltron cylindrical Analyser s Time of flight tube C60 Oven : T=500 °C electrons r = n + s Si Detector (PIPS) n

TOF 1 TOF 2 Mass gate Ring Cone 1 Cone 2 Extraction zone Acceleration, focusing and steering plates Cone 1 Cone 2

Variation of the trapping time 40 30 Trapping time (µs) 20 10 30 40 50 1 oscil. 2 oscil. 3 oscil. 4 oscil. 5 oscil. Time of flight (µs)

Fragmentation inside Fragmentation time Extraction 300 ns Tube 20 µs acceleration MCP detector Time of flight Tube Extraction 300 ns A few oscillations Mass gate Tube 20 µs C 3+ selected 60 Mass gate trapped up to 1s second Trap C 3+ selected 60

Recoil ions spectra : fragmentation inside the extraction region

Fragmentation of C604+ inside the tube Selection of C604+ using the mass gate (v = v ) C584+ C604+ 1 oscil. 2 oscil. 3 oscil. 4 oscil. 5 oscil. C604+ C584+ TOF of trapped ions

Lifetime C603+ inside the trap  =0.58 second 1 second

.3 s 1.52 s 0.9 s

Lifetime of C60r+ versus r and s values 1800 1600 s=1 1400 s=2 1200 1000 Lifetime (ms) 800 600 400 200 1 2 3 4 5 6 Charge state of C60

Statistical model RRK Excitation energy-----> redistributed over all vibrationnel modes Fragmentation rate Prob = Number of cases ( at least one mode (E >Dissociation energy))/ Total Number of cases 60 80 100 s Large energy distribution ms µs

Comparison experiment theory for C603+ Probability Stable Gaussian energy distrabution ext trap tube 20 40 60 80 100 120 140 160 E(eV) E= 45 eV ∆E =73 eV Fragmentation Ratio 0,0E+00 2,0E-03 4,0E-03 6,0E-03 8,0E-03 1,0E-02 1,2E-02 1,4E-02 20 40 60 80 100 120 140 160 E(eV) P1(EXT) P2(TUB) P3(TRAP) P3(Stable) trap Stable tube ext

Study of two successive fragmentation processes: Future experiments Study of two successive fragmentation processes: Selected the C584+ (first fragmentation in the extraction) the excitation energy can be estimated Second fragmentation in the tube with a well know energy Stability of high charge state of C60 (up to 9) Lifetime measurements with metallic clusters

Conic Electrode Trap TOF 2 Cone 2 Ring Cone 1 TOF 1 Acceleration, focusing and steering plates TOF 1 TOF 2 Cone 1 Cone 2 Ring Extraction zone

Operation of the trap : Timing diagram Ion arrival in center of trap Projectile signal 0.9 µs Projectile signal Delayed e- signal Cone 1 closing 0 V 200 V Delayed projectile signal Cone 2 closing 25 µs for C60+ 13 µs for C604+ 0 V 200 V Collision t0 Cone 2 opening Ion signal + few µs e- signal << 1µs time Trapping time few µs to 1s If correct e- signal in coincidence, operation of the trap Cone 2 Cone 1

Broad regime : Sharp turning points Preliminary tests : Stability of trajectories Critical regime or Narrow regime Broad regime Efficiency Cone voltage (V) 2 Types of trajectoires : Narrow regime : Smooth turning points Broad regime : Sharp turning points

Preliminary results : electron capture on Ar Ar8+ + Ar Ar7+ + Ar+ Ar8+ + Ar Ar7+ + Ar3++ 2e- Counts t = 28 ms Trapping Time (ms) Trapping Time (ms) t1 = 14 ms t2 = 31 ms t3 = 33 ms

Variation of the trapping time: Principe Ar8+ + C60 Ar7+ + C602++ e- Broad regime : Vc = 700 V

mbar C603+ counts Time (µs) Probability(µs-1) Pressure(mbar)