GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008

Slides:



Advertisements
Similar presentations
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Advertisements

Department of Electronics Nanoelectronics 13 Atsufumi Hirohata 12:00 Wednesday, 25/February/2015 (P/L 006)
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
Magnetic Tunnel Junctions. Transfer Hamiltonian Tunneling Magnetoresistance.
Magnetoresistance of tunnel junctions based on the ferromagnetic semiconductor GaMnAs UNITE MIXTE DE PHYSIQUE associée à l’UNIVERSITE PARIS SUD R. Mattana,
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
POTENTIAL APPLICATIONS OF SPINTRONICS Dept. of ECECS, Univ.of Cincinnati, Cincinnati, Ohio M.Cahay February 4, 2005.
Spin transport in spin-orbit coupled bands
"Spin currents in noncollinear magnetic structures: when linear response goes beyond equilibrium states"
Lecture Number 4: Charge Transport and Charge Carrier Statistics Chem 140a: Photoelectrochemistry of Semiconductors.
Optical spin transfer in GaAs:Mn Joaquin Fernandez-Rossier, Department of Applied Physics, University of Alicante (SPAIN) CECAM June 2003, Lyon (FR) cond-mat/
Optical study of Spintronics in III-V semiconductors
Relaziation of an ultrahigh magnetic field on a nanoscale S. T. Chui Univ. of Delaware
Spin Hall Effect induced by resonant scattering on impurities in metals Peter M Levy New York University In collaboration with Albert Fert Unite Mixte.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
Sinai University Faculty of Engineering Science Department of Basic science 7/14/ W6.
Chapter V July 15, 2015 Junctions of Photovoltaics.
Introductory Nanotechnology ~ Basic Condensed Matter Physics ~
The Hall Effects Richard Beck 141A Hall Effect Discovery The physics behind it Applications Personal experiments 2Richard Beck - Physics 141A, 2013.
GaAs QUANTUM DOT COM Ray Murray. Why Quantum Dots? Novel “atom-like” electronic structure Immunity to environment Epitaxial growth Well established device.
Current and Resistance Chapter 26 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
-Electric Current -Resistance -Factors that affect resistance -Microscopic View of Current AP Physics C Mrs. Coyle.
Dissipationless quantum spin current at room temperature Shoucheng Zhang (Stanford University) Collaborators: Shuichi Murakami, Naoto Nagaosa (University.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Current, Resistance and Power
Introduction to spin-polarized ballistic hot electron injection and detection in silicon by Ian Appelbaum Philosophical Transactions A Volume 369(1951):
Ravi Sharma Co-Promoter Dr. Michel Houssa Electrical Spin Injection into p-type Silicon using SiO 2 - Cobalt Tunnel Devices: The Role of Schottky Barrier.
Observation of the spin-Hall Effect Soichiro Sasaki Suzuki-Kusakabe Lab. Graduate School of Engineering Science Osaka University M1 Colloquium.
December 2, 2011Ph.D. Thesis Presentation First principles simulations of nanoelectronic devices Jesse Maassen (Supervisor : Prof. Hong Guo) Department.
Pure Spin Currents via Non-Local Injection and Spin Pumping Axel Hoffmann Materials Science Division and Center for Nanoscale Materials Argonne National.
Magnetism in ultrathin films W. Weber IPCMS Strasbourg.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
The Story of Giant Magnetoresistance (GMR)
Chap. 41: Conduction of electricity in solids Hyun-Woo Lee.
Semiconductor and Graphene Spintronics Jun-ichiro Inoue Nagoya University, Japan Spintronics applications : spin FET role of interface on spin-polarized.
L4 ECE-ENGR 4243/ FJain 1 Derivation of current-voltage relation in 1-D wires/nanotubes (pp A) Ballistic, quasi-ballistic transport—elastic.
Highly spin-polarized materials play a central role in spin-electronics. Most such materials have a fixed spin polarization P dictated by the band structure,
ECEE 302: Electronic Devices
Quantum Confinement in Nanostructures Confined in: 1 Direction: Quantum well (thin film) Two-dimensional electrons 2 Directions: Quantum wire One-dimensional.
 Ferromagnetism  Inhomogenous magnetization  Magnetic vortices  Dynamics  Spin transport Magnetism on the Move US-Spain Workshop on Nanomaterials.
O AK R IDGE N ATIONAL L ABORATORY U. S. D EPARTMENT OF E NERGY Modeling Electron and Spin Transport Through Quantum Well States Xiaoguang Zhang Oak Ridge.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Ferromagnetic Quantum Dots on Semiconductor Nanowires
Detection of current induced Spin polarization with a co-planar spin LED J. Wunderlich (1), B. Kästner (1,2), J. Sinova (3), T. Jungwirth (4,5) (1)Hitachi.
Introduction to Spintronics
Microscopic theory of spin transport
1 Semiconductor Devices  Metal-semiconductor junction  Rectifier (Schottky contact or Schottky barrier)  Ohmic contact  p – n rectifier  Zener diode.
Transport in Solids Introduction Peter M Levy New York University.
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Experiments to probe the inverse Spin-Hall Effect in GaAs U. Pfeuffer, R. Neumann, D. Schuh, W. Wegscheider, D. Weiss 7. June 2008 University of Regensburg.
Chapter 7 in the textbook Introduction and Survey Current density:
Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge W. S. Cho and J. A. C. Bland Cavendish Laboratory, University of Cambridge, UK.
Spin as itinerant carrier of information A. Vedyayev, N. Ryzhanova, N. Strelkov (MSU) M. Chshiev, B. Dieny (Spintec, France)
Nanoelectronics Part II Many Electron Phenomena Chapter 10 Nanowires, Ballistic Transport, and Spin Transport
제 4 장 Metals I: The Free Electron Model Outline 4.1 Introduction 4.2 Conduction electrons 4.3 the free-electron gas 4.4 Electrical conductivity 4.5 Electrical.
-Electric Current -Resistance -Factors that affect resistance -Microscopic View of Current AP Physics C Mrs. Coyle.
Department of Electronics
Spin Electronics Peng Xiong Department of Physics and MARTECH
[Nonuniform primary photocurrent spreading in quantum well infrared photoconductors] M. Cook Solid State Physics Phys 8510.
EE 315/ECE 451 Nanoelectronics I
J. Appl. Phys. 112, (2012); Scanning Tunneling Microscopy/Spectroscopy Studies of Resistive Switching in Nb-doped.
Electrical Properties of Materials
Magnetic Data Storage and Nanotechnology
Andres Reynoso, Gonzalo Usaj and C. A. Balseiro
Michael Fuhrer Director, FLEET Monash University
Information Storage and Spintronics 18
New Possibilities in Transition-metal oxide Heterostructures
Presentation transcript:

GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008 Microscopic Origin of CPP-GMR… SPIN ACCUMULATION & SPIN DIFFUSION Henri JAFFRES Unité Mixte de Physique CNRS/Thales et Université Paris Sud 11 a terrific example of how fundamental research can lead to cutting-edge technology, which in turn feeds back into fundamental research -- in this case, possibly enabling future breakthroughs in nanotechnology and quantum computing. GDR-Physique Quantique Mésoscopique, 8-11 Décembre 2008

Spin-polarized transport in 3d Ferromagnet *) two current model by Mott M Ex: Co Transport du courant en parallèle pa un canal d’ ⓔ de spin  et un canal de spin  Résistivité dans chaque canal proportionnelle au nombre de transition sd EF s d *) Equivalent resistor scheme *) Bulk spin asymetry coefficient

CPP-GMR & SPIN ACCUMULATION NANOWIRES : Co Co H(kG) (NiFe50Å)/Cu40Å) (Co100Å/Cu50Å) Piraux et al.; Appl. Phys. Lett. 65, 2484 (1994) Blondel et al.; Appl. Phys. Lett. 65, 3019 (1994) First measurements of CPP-GMR in 2-D multilayers, see Schroeder, Bass, Pratt (MSU) For a review see Barthélémy et al., Handbook of Magn. Mat., vol.12, edt by K.J.Buschow , Elsevier(1999)

CPP-GMR & SERIES RESISTANCE MODEL P configuration AP configuration M NM M M NM M   CONDITIONS : thickness << Spin Diff. Length lsf & Spin relaxation negligible in Cu   r R R  = (r+R)/2 R  = (R+r)/2 R  = r r r SPIN ACC. R R Current spin polarization R  = R GMR as a probe of the current spin polarization T. Valet - A. Fert, PRB (1993)

IN MAGNETIC MULTILAYER SPIN ACCUMULATION IN MAGNETIC MULTILAYER s s d d

Ferromagnet ( ex: Fe, Co ) current Spin Polarization Interface FM/NM : mécanisme d’injection de spins Spin Polarization ex: Co = 0.46 Mott, Proc. Roy. Soc. 156, 368 (1936) Campbell-Fert, Ferrom. mater, vol.3, 717 (1982) Ferromagnet ( ex: Fe, Co ) Non magnetic ( ex: Cu, GaAs ) zone of spin accumulation Splitting of  and  Fermi levels  current Spin Polarization diffusive spin current Van Son, PRL 58 (1987)

Good conductivity matching for metals Injection métal magnétique  métal non magnétique FM NM T. Valet, A. Fert, PRB 1993 number of spin flips in F accum. spins in FM accum. spins in NM number of spin flips in NM Good conductivity matching for metals

Profile n(x) of carrier density DIFFUSIVE CURRENT Profile n(x) of carrier density Jl n(x) current J ? Jr : mean free path z Diffusion constant

(related to band filling) DIFFUSION CURRENT carrier density Fermi level density of states EF EF,0=equilibrium chemical potential (related to band filling) EF=c

DRIFT CURRENT Ohm’s law Drift current JE in the presence of an electric field E *) average velocity acquired by a particle between 2 successive diffusions Momentum relaxation time : Displacement of the Fermi surface drift velocity Electrical potential Ohm’s law

ELECTROCHEMICAL POTENTIAL relaxation term phenomenological

DIFFUSION Vs. BROWNIAN MOTION ( E=0 ) Diffusion equation S *) EXPLORATION RADIUS  mean free path *) NUMBER OF SURFACE ‘S’ CROSSINGS

SPIN ACCUMULATION & SPIN CURRENT p ,  (mean free path) sf, lsf (spin diffusion length) t=0 lsf

CHEMICAL vs. ELECTRICAL POTENTIALS d d eV zone of spin accumulation Co Cu

LINK BETWEEN SPIN CURRENT & SPIN ACCUMULATION

SPIN ACCUMULATION & SPIN CURRENT diffusive spin current FM NM Interface z=0 Current polarization continuity of spin current Co Cu = spin-polarized current at the interface

SIMPLE SCHEME FOR MAGNETORESISTANCE FM Interface z=0 NM potential drop at the interface

Positive MR CONTACT RESISTANCE Vs. SPIN ACCUMULATION SPIN ASSYMETRY Paramagnetic electrodes SPIN ASSYMETRY FERROM. RESISTIVITY  FERROM. SPIN DIFF. LENGTH  CHARACTERISTIC RESISTANCE

EFFETS DE BULK + INTERFACE FM NM

CPP-GMR & SPIN ACCUMULATION NANOWIRES : Co Co H(kG) (NiFe50Å)/Cu40Å) (Co100Å/Cu50Å) Piraux et al.; Appl. Phys. Lett. 65, 2484 (1994) Blondel et al.; Appl. Phys. Lett. 65, 3019 (1994) First measurements of CPP-GMR in 2-D multilayers, see Schroeder, Bass, Pratt (MSU) For a review see Barthélémy et al., Handbook of Magn. Mat., vol.12, edt by K.J.Buschow , Elsevier(1999)

CPP-GMR & SERIES RESISTANCE MODEL P configuration AP configuration M NM M M NM M   CONDITIONS : thickness << Spin Diff. Length lsf & Spin relaxation negligible in Cu   r R R  = (r+R)/2 R  = (R+r)/2 R  = r r r SPIN ACC. R R Current spin polarization R  = R GMR as a probe of the current spin polarization T.Valet - A. Fert, PRB (1993)

SPIN-SWITCH : DETECTION ELECTRIQUE D’UNE ACCUMULATION DE SPINS Principle : Johnson and Silsbee, PRL 55, 1790 (1985) ; PRB 37, 5312 (1988) Experiments : Jedema et al., Nature 410, 345 (2001) A. Fert & al., J. Phys. D : Appl. Phys 35, 2443 (2002) ; J.-M. George PRB (2003) spin injection into Cu (N) through a first magnetic electrode magnetic third contact  100 nm

Good conductivity matching for metals FM NM T. Valet, A. Fert, PRB 1993 accum. spins in FM accum. spins in NM number of spin flips in F number of spin flips in NM Good conductivity matching for metals

discontinuity of EF,  and EF,  at interface = (1 ) rb j, Rashba PRB 62,R16267 (2000); Fert-Jaffres PRB 64,184420 (2001) discontinuity of EF,  and EF,  at interface = (1 ) rb j, large interface resistance  large discontinuity of EF  number of spin flip in F  number of spin flip in SC  Increase of the spin diffusive current in the semiconductor

CASE OF MULTILAYERS accumulation vector at left accumulation vector Co  Cu Co  Cu accumulation vector at left accumulation vector at right propagation matrix transfer matrix interface matrix

Ferromagnet ( ex: Fe, Co ) current Spin Polarization Interface FM/NM : mécanisme d’injection de spins Spin Polarization ex: Co = 0.46 Mott, Proc. Roy. Soc. 156, 368 (1936) Campbell-Fert, Ferrom. mater, vol.3, 717 (1982) Ferromagnet ( ex: Fe, Co ) Non magnetic ( ex: Cu, GaAs ) zone of spin accumulation Splitting of  and  Fermi levels  current Spin Polarization diffusive spin current Van Son, PRL 58 (1987)

FM NM T. Valet, A. Fert, PRB 1993

discontinuity of EF,  and EF,  at interface = (1 ) rb j, Rashba PRB 62,R16267 (2000); Fert-Jaffres PRB 64,184420 (2001) discontinuity of EF,  and EF,  at interface = (1 ) rb j, large interface resistance  large discontinuity of EF  number of spin flip in F  number of spin flip in SC  Increase of the spin diffusive current in the semiconductor

Magnetic tunnel junction : Spin-dependent Interface resistance FM I SC Tunnel junction = Spin-Dependent interface resistance  P : polarisation

SPIN INJECTION : MICROSCOPIC MODEL OF DIFFUSION current polarization ? NO YES FM SC ? FM  SC FM SC FM  d Sink Sink  Probe ? ? resistive interface ( T ) Current polarization : Current polarization :

Spin Accumulation Vs. Spin Current FM I SC

EFFETS DE BULK + INTERFACE FM NM

EFFETS DE BULK + INTERFACE FM NM

+ - CoFe MgO AlGaAs(n) GaAs AlGaAs(p) Spin LED Coll., LPCNO TOULOUSE (X. Marie)

Electrical spin injection & optical detection Polarisation-resolved Electroluminescence experiments 1 3 s+ s - H s- s+ s- s+ Measure of the circular polarization(Pc) Determine the current spin-polarization injected in the Quantum well I+ - I- I+ + I- Pc (EL) = « Injection and detection of a spin-polarized current in a light-emitting diode », R. Fiederling et al., Nature 402, 787 (1999)

Zhu et al., Phys. Rev. Lett. 87, 016601 (2001) INJECTION INTO (Al)GaAs THROUGH A SCHOTTKY BARRIER : DETECTION BY ELECTROLUMINESCENCE MEASUREMENTS TG=10°C Hanbicki et al., Appl. Phys. Lett. 80, 1240 (2002) Zhu et al., Phys. Rev. Lett. 87, 016601 (2001) Ploog, J. Appl. Phys., 91 (10), 7256 (2002) TG=50°C

INJECTION INTO GaAs THROUGH AN OXIDE BARRIER (Al2O3) V.F. Mostnyi, V.I. Safarov, Appl. Phys. Lett. 81(2), 265 (2002) 1 SZ  2.5%  Pelec. >10 % P. Van Dorpe et al, Jpn. J. Appl. Phys. Part 2, vol.42, L502 (2003) SZ  8%  Pelec. >24 % sputtering MBE 100 nm Oblique Hanle Effect (OHE)

INJECTION INTO GaAs THROUGH AN OXIDE BARRIER (Al2O3) V.F. Mostnyi, V.I. Safarov, Appl. Phys. Lett. 81(2), 265 (2002) 1 SZ  2.5%  Pelec. >10 % P. Van Dorpe et al, Jpn. J. Appl. Phys. Part 2, vol.42, L502 (2003) SZ  8%  Pelec. >24 % sputtering MBE 100 nm Oblique Hanle Effect (OHE)

OPTICAL DETECTION OF SPIN ACCUMULATION IN GaAs

Injection électrique et détection optique de spin a) Croissance T° ambiante b) Croissance 300° C Circular polarization Vs. perpendicular magnetic field Y. Lu et al., Appl. Phys. Lett. 93, 152102 (2008)

Measurement of t(T) et ts (T) et F(T) by Time-Resoloved PL experiments  Lifetime and S spin relaxation time PC = F*Ps Ps is the spin-polarization of electrons injected in the QW F(T) = 1 1+(T)/ S(T))

Mg0 thickness dependence on spin-injection yield Sample Thickness (nm) A 1.4 B2 2.6 C 4.3 The EL Spin-polarization increases With MgO thickness B2 A C

MR vs. characteristic times… ‘Courant de spin de rétrodiffusion’ injection détection

HANLE EFFECT = DEPOLARIZATION BY SPIN PRECESSION AROUND A TRANSVERSE MAGNETIC FIELD

Hanle effect

A SINGLE CONTACT EXPERIMENT…… n  51018 cm-3 n  21019 cm-3 w L 2 1 W M I GaAs Co Al2O3 H Coll. LPN Marcoussis (A. Lemaitre)

VARIATION OF THE CONTACT RESISTANCE …… ( NO WEAK LOCALIZATION EFFECT ! )

Electrical measurements… B C a b

Electrical measurements… B C a b Kerr effect…

Resume : MR Vs. INTERFACIAL RESISTANCE (CPP GEOMETRY) A. Fert, H. Jaffrès. Phys. Rev. B, 64, 184420 (2001) FM SC d NO SPIN INJECTION + NO SPIN DETECTION INJECTION & DETECTION