Ch. 2 – Intelligent Agents

Slides:



Advertisements
Similar presentations
Supplemental Figure 1 A No. at risk T T T
Advertisements

Ch. 19 – Knowledge in Learning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Artificial Intelligence: Chapter 2
Ch. 5 – Adversarial Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Plans for Today Chapter 2: Intelligent Agents (until break) Lisp: Some questions that came up in lab Resume intelligent agents after Lisp issues.
Ch. 2 – Intelligent Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 18 – Learning Supplemental slides for CSE 327 Prof. Jeff Heflin.
Chapter 2 Intelligent Agents
January 11, 2006AI: Chapter 2: Intelligent Agents1 Artificial Intelligence Chapter 2: Intelligent Agents Michael Scherger Department of Computer Science.
Ch. 8 – First Order Logic Supplemental slides for CSE 327 Prof. Jeff Heflin.
P449. p450 Figure 15-1 p451 Figure 15-2 p453 Figure 15-2a p453.
CPSC 322, Lecture 35Slide 1 Finish VE for Sequential Decisions & Value of Information and Control Computer Science cpsc322, Lecture 35 (Textbook Chpt 9.4)
CSE 471/598, CBS 598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Fall 2004.
Cooperating Intelligent Systems Intelligent Agents Chapter 2, AIMA.
Plans for Today Chapter 2: Intelligent Agents (until break) Lisp: Some questions that came up in lab Resume intelligent agents after Lisp issues.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we? Spring 2004.
Russell and Norvig: Chapter 2 CMSC421 – Fall 2006
Introduction to Logic Programming WS2004/A.Polleres 1 Introduction to Artificial Intelligence MSc WS 2009 Intelligent Agents: Chapter 2.
CSE 473: Artificial Intelligence Spring 2014 Hanna Hajishirzi Problem Spaces and Search slides from Dan Klein, Stuart Russell, Andrew Moore, Dan Weld,
CSE 573 Artificial Intelligence Dan Weld Peng Dai
Introduction to AI. H.Feili, 1 Introduction to Artificial Intelligence LECTURE 2: Intelligent Agents What is an intelligent agent?
Artificial Intelligence
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 9 – FOL Inference Supplemental slides for CSE 327 Prof. Jeff Heflin.
Chapter 7 Dataflow Architecture. 7.1 Dataflow Models  A dataflow program: the sequence of operations is not specified, but depends upon the need and.
For Friday No reading (other than handout) Homework: –Chapter 2, exercises 5 and 6 –Lisp handout 1.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Intelligent Agents Chapter 2. Outline Agents and environments Rationality PEAS (Performance measure, Environment, Actuators, Sensors) Environment types.
Intelligent Agents Introduction Rationality Nature of the Environment Structure of Agents Summary.
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Chapter 2 Agents. Intelligent Agents An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment.
CSE 471/598 Intelligent Agents TIP We’re intelligent agents, aren’t we?
Ch. 3 – Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Ch. 4 – Informed Search Supplemental slides for CSE 327 Prof. Jeff Heflin.
Lecture 2: Intelligent Agents Heshaam Faili University of Tehran What is an intelligent agent? Structure of intelligent agents Environments.
Ch. 7 – Logical Agents Supplemental slides for CSE 327 Prof. Jeff Heflin.
Return to Home! Go To Next Slide! Return to Home! Go To Next Slide!
Artificial Intelligence
Intelligent Agents By, JITHIN M J.
Pertemuan 2 Kecerdasan Buatan
AI as the Design of Agents
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Figures & Tables from the textbook.
هوش مصنوعي فصل دوم عاملهاي هوشمند.
هوش مصنوعي فصل دوم عاملهاي هوشمند.
شاخصهای عملکردی بیمارستان
Artificial Intelligence I : Intelligent Agents
فرق بین خوب وعالی فقط اندکی تلاش بیشتر است
CS4341 Introduction to Artificial Intelligence
FUNCTIONS X Y.
Ch. 19 – Knowledge in Learning
EA C461 – Artificial Intelligence Problem Solving Agents
Console.WriteLine(“Good luck!”);
Ch. 5 – Adversarial Search
Figure 11-1.
Figure Overview.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Figure Overview.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Supplemental slides for CSE 327 Prof. Jeff Heflin
Artificial Intelligence
Supplemental slides for CSE 327 Prof. Jeff Heflin
Ch. 5 – Adversarial Search
Ch. 2 – Intelligent Agents
Supplemental slides for CSE 327 Prof. Jeff Heflin
Lesson 3.3 Writing functions.
Supplemental slides for CSE 327 Prof. Jeff Heflin
Presentation transcript:

Ch. 2 – Intelligent Agents Supplemental slides for CSE 327 Prof. Jeff Heflin

Agent Review Agent percepts sensors Environment ? actions actuators ideal rational agent: an agent that always takes the action expected to maximize its performance measure, given the set of percepts (percept sequence) it has seen so far

Table Driven Agent function TABLE-DRIVEN-AGENT(percept) returns an action static: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences append percept to the end of percepts action  LOOKUP(percepts, table) return action From Figure 2.7, p. 45

Table Driven Agent function name input output type function TABLE-DRIVEN-AGENT(percept) returns an action static: percepts, a sequence, initially empty table, a table of actions, indexed by percept sequences append percept to the end of percepts action  LOOKUP(percepts, table) return action From Figure 2.7, p. 45 assignment operation function call output value static variables: maintain values between function calls, like instance variables in OO, but can only be referenced within the function

Rock, Scissors, Paper Table Driven Agent Percept Sequence Action <Start> Rock <Start, Win(Rock,Scissors)> <Start, Lose(Rock,Paper)> Scissors <Start, Tie(Rock,Rock)> Paper <Start, Win(Rock,Scissors), Win (Rock,Scissors)> <Start, Win(Rock,Scissors), Lose(Rock,Paper)> <Start, Win(Rock,Scissors), Tie(Rock,Rock)> <Start, Lose(Rock,Paper), Win(Scissors,Paper)> <Start, Lose(Rock,Paper), Lose(Scissors,Rock)> <Start, Lose(Rock,Paper), Tie(Scissors,Scissors)> …. …