Mössbauer studies of dilute magnetic semiconductors

Slides:



Advertisements
Similar presentations
REACTIONS OF INTERSTITIAL CARBON WITH BACKGROUND IMPURITIES IN N- AND P-TYPE SILICON STRUCTURES L.F. Makarenko*, L.I. Murin**, M. Moll***, F.P. Korshunov**,
Advertisements

IAEA CRP: Ion Beam Modification of Insulators RCM, Dec , 2007, FNRC, Uni. Chiang Mai, Thailand Study of the formation of ferro-, para- and superpara-
Hot Electron Energy Relaxation In AlGaN/GaN Heterostructures 1 School Of Physics And Astronomy, University of Nottingham, University Park, Nottingham,
Lecture 8a EPR Spectroscopy.
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Slide # 1 SPM Probe tips CNT attached to a Si probe tip.
PREPARATION OF ZnO NANOWIRES BY ELECTROCHEMICAL DEPOSITION
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
57 Mn Mössbauer collaboration at ISOLDE/CERN Emission Mössbauer spectroscopy of advanced materials for opto- and nano- electronics Spokepersons: Haraldur.
Ion Beam Analysis Dolly Langa Physics Department, University of Pretoria, South Africa Blane Lomberg Physics Department, University of the Western Cape,
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Ion implantation doping of perovskites and related oxides Ulrich Wahl Instituto Tecnológico e Nuclear (ITN), Sacavém, Portugal Collaborators: João Guilherme.
Implantation of N-O in Diamond
NAN ZHENG COURSE: SOLID STATE II INSTRUCTOR: ELBIO DAGOTTO SEMESTER: SPRING 2008 DEPARTMENT OF PHYSICS AND ASTRONOMY THE UNIVERSITY OF TENNESSEE KNOXVILLE.
Getting FM in semiconductors is not trivial. Recall why we have FM in metals: Band structure leads to enhanced exchange interactions between (relatively)
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Post Anneal Solid State Regrowth
Ion Implantation and Ion Beam Analysis of Silicon Carbide Zsolt ZOLNAI MTA MFA Research Institute for Technical Physics and Materials Science Budapest,
Photoacoustic Spectroscopy of Surface Defects States of Semiconductor Samples 1) M.Maliński, 2) J.Zakrzewski, 2) F.Firszt 1) Department of Electronics.
Juliana Marques Ramos 1,2 German Thesis Advisor: Reiner Vianden 2, Brazilian Thesis Advisor: Artur Wilson Carbonari 1 Collaborators: João Guilherme Martins.
Applications of Mössbauer Spectroscopy at WITS and ISOLDE/CERN by Professor Deena Naidoo Wits-NECSA Workshop September 2015.
High Resolution optical spectroscopy in isotopically-pure Si using radioactive isotopes: towards a re-evaluation of deep centres Mike Thewalt 1, Karl Johnston.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
Using computer modelling to help design materials for optical applications Robert A Jackson Chemical & Forensic Sciences School of Physical & Geographical.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Daresbury Laboratory Ferromagnetism of Transition Metal doped TiN S.C. Lee 1,2, K.R. Lee 1, K.H. Lee 1, Z. Szotek 2, W. Temmerman 2 1 Future Technology.
Direct identification of interstitial Mn in Ga 1-x Mn x As and evidence of its high thermal stability Lino Pereira 1, 2, 3 U. Wahl 2, J. G. Correia 2,,
UNIVERSITÄT DES SAARLANDES 1 Introduction to solid state physics at ISOLDE Th. Wichert (Universität des Saarlandes) Nuclear Physics & Astrophysics at CERN.
Diffusion of 56 Co in GaAs, ZnO and Si 1-x Ge x systems INTC Meeting
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
INTERSTITIAL DEFECT REACTIONS IN P-TYPE SILICON IRRADIATED AT DIFFERENT TEMPERATURES L.F. Makarenko*, S.B. Lastovski**, L.I. Murin**, M. Moll*** * Belarusian.
Burnaby - Dublin - Freiberg – Manchester – Saarbrücken - ISOLDE Collaboration Spokesperson: M. Deicher Contact person: K. Johnston.
Magnetic and structural properties of manganese doped (Al,Ga)N studied with Emission Mössbauer Spectroscopy Spokespersons: Alberta Bonanni Haraldur Páll.
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
Semiconductors with Lattice Defects
Donor-Acceptor Complexes in ZnO
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers at Duquesne University.
Influence of deposition conditions on the thermal stability of ZnO:Al films grown by rf magnetron sputtering Adviser : Shang-Chou Chang Co-Adviser : Tien-Chai.
Neutron Transmutation Doping Conceptual Design Dr. Mosa Othman Silicon doping facility manger Egyptian Second Research Raector (ETRR-2) Atomic Energy Authority.
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
1 Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Sacavém, Portugal 2 Instituut voor Kern- en Stralingsfysica.
Luminescent Properties of ZnO and ZnO:Ce Thin-Films Manuel García-Méndez
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Fighting f-factors and implantation damage in emission Mössbauer spectroscopy Haraldur Páll Gunnlaugsson* The Mössbauer collaboration at ISOLDE CERN The.
1 4.1 Introduction to CASTEP (1)  CASTEP is a state-of-the-art quantum mechanics-based program designed specifically for solid-state materials science.
Microwave Spectroscopy of the Autoionizing 5d 3/2 n l States of Barium Edward Shuman Tom Gallagher.
1 WORKSHOP AND USERS February 2007 Lattice site location of implanted Fe in SrTiO 3 and lattice damage recovery studies A. C. Marques 1,4 *, U. Wahl 1,2,
Effect of gallium incorporation on the physical properties of ZnO films grown by spray pyrolysis 指導教授:林克默 博士 報告學生:郭俊廷 報告日期: 99/11/29 Journal of Crystal.
Emission Mössbauer spectroscopy of advanced materials for opto- and nano-electronics Spokepersons: Haraldur Páll Gunnlaugsson Sveinn Ólafsson Contact person:
Mossbauer spectroscopy
Semiconducting  -FeSi 2 Presented by Srujana Aramalla.
Solid State Devices EE 3311 SMU
Solid State and bio-physics at ISOLDE
Emission Channeling with Short-Lived Isotopes: lattice location of impurities in semiconductors and oxides L.M.C. Pereira1 , L. Amorim1, J.P. Araújo4,
High-temperature ferromagnetism
New Tilted-Foils Plus beta-NMR Setup at REX-ISOLDE
Mӧssbauer study of Y3Al5O12 (YAG), Y3Fe5O12 (YIG) and Gd3Ga5O12 (GGG) single crystal garnets following dilute implantation of 57Mn+. P. B. Krastev,
Emission Mössbauer Spectroscopy at ISOLDE/CERN
Homogeneity and thermal donors in p-type MCz-Si detector materials
Modeling Vacancy-Interstitial Clusters and Their Effect on Carrier Transport in Silicon E. Žąsinas, J. Vaitkus, E. Gaubas, Vilnius University Institute.
Half-Metallic Ferromagnetism in Fe-doped Zn3P2 From First-Principles Calculations G. JAI GANESH and S. MATHI JAYA Materials Science Group, Indira Gandhi.
Ion beam analysis of materials with MeV beams at the Ruhr University Bochum Ruhr-Uni-Bochum Contribution to the ISOLDE workshop, Dec, 4th 2017, Hans-Werner.
CHEM 312: Lecture 6 Part 2 Gamma Decay
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Effect of Cryogenic Temperature Deposition of Various Metal Contacts to Bulk, Single-Crystal n-type ZnO J. Wright1, L. Stafford1, B.P. Gila1, D.P. Norton1,
Metastability of the boron-vacancy complex (C center) in silicon: A hybrid functional study Cecil Ouma and Walter Meyer Department of Physics, University.
Defects & Impurities BW, Ch. 5 & YC, Ch 4 + my notes & research papers
Experimental Investigation of of the use of Elemental Transmutation for efficient p-type doping in HgCdTe and HgCdTeSe Contract Officer: Dr. W. Clark,
Ion-beam, photon and hyperfine methods in nano-structured materials
Presentation transcript:

Mössbauer studies of dilute magnetic semiconductors Marco Fanciulli MDM – CNR-INFM National Laboratory http://www.mdm.infm.it

The collaboration (1) Aarhus – (2) Berlin – (3) CERN – (4) Durban – (5) Milano – (6) Reykjavik M. Fanciulli5, K. Bharuth-Ram4, A. Debernardi5, H. P. Gislason6, H.P. Gunnlaugsson1, Ö. Helgason6, K. Johnston3, R. Mantovan5, S. Olafsson6, D. Naidoo4, R. Sielemann2, G. Scarel5, G. Weyer1 Spokesperson: M. Fanciulli Contact person: K. Johnston

Main Objective Understand the origin of the magnetic ordering in semiconducting and insulating oxides and control their magnetic properties

Main Motivations Fundamental solid state physics: understand the mechanisms leading to magnetism in oxides and wide band gap semiconductors Applied solid state physics: spintronic devices (MTJ, spin valves, spin transistor), novel nanoelectronic devices (logic and memory), magneto-optic components, and QIP

The magnetism can be several Bohr magnetons pr. Impurity atom. Magnetism in ZnO Doping with few percentages of 3d metal impurities gives rise to room temperature magnetism. The magnetism can be several Bohr magnetons pr. Impurity atom. Ivill et al., JAP 97 (2003) 053904 JMD Coey

No magnetism under n-type growth conditions (O2) while p-type conditions (N2O) are magnetic Decrease in magnetic moment pr. Cu atom upon amount of Cu, attributed to close Cu pairs TC > ~390 K observed

Role of defects Points out that the magentism is likely related to defects Oxygen pressure during growth has major impact on the magnetic properties; attributed to oxygen vacancies.

Samples (2% Mn) grown by solid state reaction method Sintering at ~900 K optimizes the magnetic properties (700 K - 800 K according to Coey) Sintering in Ar produces more magnetism than samples sintered in O2.

Magnetic ordering in HfO2: conflicting results Growing interest in developing magnetic oxides and semiconductors for spintronics Requirement: Curie temperature well above RT Undoped HfO2 Undoped HfO2 Experimental techniques that are able to study magnetism at the atomic scale are needed in order to clarify the nature of the observed macroscopic magnetism

Mössbauer Spectroscopy

Mössbauer Spectroscopy Isomer shift (position of spectral features): d ~ r(0) High spin Fe3+ : 0.35(10) mm/s High spin Fe2+ : 1.1(10) mm/s Quadrupole interaction (splitting of lines): DEQ ~ Vzz High spin Fe3+ : 0.5-1 mm/s High spin Fe2+ : 2-3 mm/s Cubic crystals : 0.0 mm/s Magnetic interactions (six line splitting of lines): Bhf ~ µ of site High spin Fe3+ : µ = 5 µB, Bhf ~ 50 T High spin Fe2+ : µ = 4 µB, Bhf ~ 40 T

Why 57Mn implantation Truly dilute semiconductors are easily produced as only ~3·1011 implanted probe atoms are needed to obtain a good spectrum (local concentration ~1017 cm-3). Impurity concentrations and depth profiles are controllable. Lattice defects are produced simultaneously and their interaction with the implanted probe atoms, possibly decisive for the occurrence of FM, can be studied, e.g. by varying the implantation temperature. The half-life and decay properties of 57Mn are favourable for such studies. 57Fe Mössbauer spectroscopy has sufficient sensitivity and resolution to obtain atomic scale information over a large temperature range of ~ 10 – 1000 K for studies of high TC magnetism.

Mössbauer Spectroscopy at ISOLDE

Fe Lattice location in ZnO Implanted: Measured: 59Mn (T½ = 4.6 s) → 59Fe (T½ = 44 d) 200 eV recoil b- detected with position sensitive detector > 80% of the Fe atoms are located on substitutional Zn sites at T > 300 K

57Mn implantation in ZnO: test results Sextet: 47 T - 57Fe-V complexes? Magnetic field distribution: 31 T (average) - 57FeI produced by the 40 eV recoil energy Quadrupole: 57Fe on perturbed Zn sites Single line at T>600 K - Origin? Dissolution of 57Fe-V complexes? Velocity (mm/s)

Our proposal Low temperature measurements to see in more detail the effects of interstitial defects, which become mobile in the temperature range 77 – 300 K [22] as well as a possible mobility of Zn vacancies VZn. This should allow for better determination of the nature of the defects involved. (~ 4 shifts) Measurements in external magnetic fields to determine easy magnetisation axes and the sign of the magnetic hyperfine fields. In our current setup, we can reach external magnetic fields ~0.7 T utilizing permanent magnets. (~3 shifts) Angular dependent measurements to determine Vzz axes and/or the angle between Vzz and Bhf. (~3 shifts) Measurements on differently doped ZnO, pre-implanted/incorporated with 3d impurities and n- and p-type doping. (~4 shifts) Measurements on other oxides and/or related systems (HfO2,, Lu2O3, SnO2, TiO2, GaN, AlN and InN). (~3 shifts) Time-delayed measurements: These are performed at a constant, critical temperature and spectra are measured in different time intervals after the implantation to give the annealing behaviour on a minute timescale. (~3 shifts)

Our requests Beam time: in lumps of 6-10 shifts, during 2-3 years 20 shifts in total. The UC2 target and the laser ion source are requested.

Complementary activities In parallel to the experiments planned at ISOLDE, a similar program involving stable 57Fe atoms will be pursued in the home laboratories, however, much larger concentrations are needed for measurable effects. For 2006 57Fe recoil implantation experiments are also planned at HMI in Berlin. These experiments are complementary (57Fe implantation and measurements during 100 ns) to those planned at ISOLDE. Within the planned activity, we also foresee a collaboration with the PAC and PL groups at ISOLDE.

Relevant resources at home institutions CNR-INFM MDM National Laboratory (M. Fanciulli, R. Mantovan): - Conversion electron Mössbauer spectroscopy (MS) at RT and at 120 K - ESR and EDMR (X and Q band, 300 mK – 600 K, up to 12 T) - Growth by Atomic Layer Deposition (ALD) of oxides (G. Scarel) - First principle calculations of magnetic properties of Fe doped ZnO (A. Debernardi) University of Aarhus: Conversion electron Mössbauer spectroscopy (MS) at RT and transmission MS at 14-300 K on samples with stable isotopes. (H. P. Gunnlaugsson) Theoretical calculation of Mössbauer parameters of model defects (A. Svane) University of Iceland: MBE growth of GaN, AlN and InN samples, with or without Mn doping, C-V and Hall effect and PL characterisation, (S. Olafsson and Prof. H. P. Gislason). Transmission MS from 300-1000 K, (Prof Ö. Helgason). University of KwaZulu-Natal, Durban, and iThemba LABS, South Africa ( K. Bharuth-Ram): Transmission MS at 80 – 1000 K; CEMS at RT Vibrating sample magnetometer

Conclusions Mössbauer spectroscopy following implantation of radioactive 57Mn into oxide systems is a powerful method to investigate the magnetism in these systems. The experimental procedures can be expanded providing additional relevant information (other systems, orientation, external magnetic field, extended T range, rotation). Complementary experimental techniques will be also involved at ISOLDE and at home Labs. Theoretical work directly connected with the experiments will be also carried out by the collaboration.