Section 7-6 Proportional lengths.

Slides:



Advertisements
Similar presentations
Section 6 – 6 Use Proportionality Theorem. Theorems Triangle Proportionality Theorem – If a line parallel to one side of a triangle intersects the other.
Advertisements

Use Proportionality Themes
Proportions in Triangles.
OBJECTIVES: 1) TO USE THE SIDE-SPLITTER THEOREM 2) TO USE THE TRIANGLE- ANGLE BISECTOR THEOREM 8-5 Proportions in Triangles M11.C.1.
Tuesday, January 15, §7.4 Parallel Lines & Proportional Parts CA B D E Theorem: Triangle Proportionality Theorem ◦ If a line parallel to one side.
8.6 Proportion and Similar Triangles
Proportions in Triangles Chapter 7 Section 5. Objectives Students will use the Side-Splitter Theorem and the Triangle-Angle- Bisector Theorem.
Objectives To use the side-splitter theorem. To use the triangle angle-bisector theorem.
“Is it better to be feared or respected? And I say, is it too much to ask for both?”
Warm-Up What is the scale factor (or similarity ratio) of the following two triangles?
Honors Geometry Section 8.6 Proportions and Similar Triangles.
Section 7-4 Similar Triangles.
WARM UP: What similarity statement can you write relating the three triangles in the diagram? What is the geometric mean of 6 and 16? What are the values.
The product of the means equals the product of the extremes.
6.6 Proportionality Theorems Triangle Proportionality Theorem: A line // to one side of a triangle divides the other sides proportionally. Warning: This.
Warm-Up 1 In the diagram, DE is parallel to AC. Name a pair of similar triangles and explain why they are similar.
Geometry Section 6.6 Use Proportionality Theorems.
Warm Up Week 6. Section 8.6 Day 1 I will use proportionality theorems to calculate segment lengths. Triangle Proportionality If a line parallel.
6.6 – Use Proportionality Theorems. Triangle Proportionality Theorem If a line parallel to one side of a triangle intersects the other two sides, then.
Using Proportionality Theorems Section 6.6. Triangle Proportionality Theorem  A line parallel to one side of a triangle intersects the other two sides.
Section 7-5 Proportions in Triangles Objectives: Use Side-splitter Theorem and the Triangle-Angle- Bisector Theorem.
Geometry warm ups. 7-5 PROPORTIONS IN TRIANGLES Side-Splitter Theorem When two or more parallel lines intersect other lines, proportional segments are.
Geometry/Trig 2Name: __________________________ Unit 6 GSP Explorations & NotesDate: ___________________________ Section 7-6 TAB 1 Example 1: Solve for.
Entry Task  Find the value of x in each figure  x 4 x 6 14.
Geometry 6.3 Keep It in Proportion.
Chapter 7: Similarity 7.5 Proportions in Triangles.
Chapter 8 Lesson 5 Objective: To use the Side-Splitter and Triangle – Angle Bisector Theorems.
Chapter 8 mini unit. Learning Target I can use proportions to find missing values of similar triangles.
7-5 Proportions in Triangles
Triangle Proportionality
Sect. 8.6 Proportions and Similar Triangles
Applying Properties of Similar Triangles
Proportional Lengths Unit 6: Section 7.6.
Similarity Theorems.
Section 8.6 Proportions and Similar Triangles
8.5 Proportions in Triangles
NOTEBOOK CHECK TOMORROW!
Section 6.6: Using Proportionality Theorems
Bisectors in Triangles
Lesson 5-4: Proportional Parts
Section 5.6 Segments Divided Proportionately
Section 5.6 Segments Divided Proportionately
Lesson 7-6 Proportional Lengths (page 254)
Similarity Theorems.
Triangle Proportionality Theorems
7-4 Applying Properties of Similar Triangles
Lesson 5-4 Proportional Parts.
Working with Ratio Segments part 2
Parallel Lines & Proportional Parts
Objective: To use the Side-Splitter theorem.
CHAPTER 7 SIMILAR POLYGONS.
8.5 Three Theorems Involving Proportion
Proportions and Similar Triangles
Chapter 8 Lesson 5 Objective: To use the Side-Splitter and Triangle –Angle Bisector Theorems.
Geometry 8.4 Proportionality Theorems
Three Theorems Involving Proportions
Similarity Theorems.
LT 7.5 Apply Properties of Similar Triangles
Triangle Midsegment Theorem – The segment joining the midpoints of any two sides will be parallel to the third side and half its length. If E and D are.
Lesson 7-4 Proportional Parts.
7-4: Proportions in Triangles
Proportions in Triangles
7-4: Proportions in Triangles
Parallel Lines and Proportional Parts
4/26 Half Day.
Parallel Lines and Proportional Parts
Lesson 5-4: Proportional Parts
Similar Triangles by Tristen Billerbeck
8.6 Proportion and Similar Triangles
Presentation transcript:

Section 7-6 Proportional lengths

Thm 7-3: triangle proportionality theorem If a line parallel to one side of a triangle intersects the other two sides, then it divides those sides proportionally.

j a k b d c Proportions that can be created using the Triangle Proportionality Theorem:

Corollary If three parallel lines intersect two transversals, then they divide the transversals proportionally.

R S T X Y Z

THM 7-4: TRIANGLE ANGLE BISECTOR THEOREM If a ray bisects an angle of a triangle, then it divides the opposite side into segments proportional to the other two sides.

By using the Triangle Angle Bisector Theorem, we can say Given: bisects D F E G By using the Triangle Angle Bisector Theorem, we can say