Radiation Monitor: Concepts, Simulation for an Advanced Read Out

Slides:



Advertisements
Similar presentations
Standalone VeloPix Simulation Jianchun Wang 4/30/10.
Advertisements

M. Palm, CERN1 Performance test of ACEM-detector (Aluminum Cathode Electron Multiplier) Marcus Palm AB-ATB-EA.
Slide 1 Diamonds in Flash Steve Schnetzer Rd42 Collaboration Meeting May 14.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
TOF at 10ps with SiGe BJT Amplifiers
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
Sebastian Böser Acoustic test setup at south pole IceCube Collaboration Meeting, Berkeley, March 2005.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
1 Alessandra Casale Università degli Studi di Genova INFN Sezione Genova FT-Cal Prototype Simulations.
May 31, 2008 SuperB PID sessionMarko Starič, Ljubljana Marko Starič J. Stefan Institute, Ljubljana Report on hardware tests and MC studies in Ljubljana.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
M. Dugger, February Triplet polarimeter study Michael Dugger* Arizona State University *Work at ASU is supported by the U.S. National Science Foundation.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Tests of RPCs (Resistive Plate Chambers) for the ARGO experiment at YBJ G. Aielli¹, P.Camarri¹, R. Cardarelli¹, M. Civardi², L. Di Stante¹, B. Liberti¹,
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
meeting, Oct. 1 st 2015 meeting, Oct. 1 st Gas Pixel: TRD + Tracker.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
Development of the X-ray Detectors for XTP Cao Xue-lei Institute of High Energy Physics, CAS IHEP, Beijing.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
PPAC Jonathan Olson University of Iowa Thesis Defense 8 April 2005.
Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL
F. Arteche EMC: Electronics system integration for HEP experiments (Grounding & Shielding)
RD05 Florence CVD Diamond Radiation Sensors For Application In Very High Radiation Environments 7 th International Conference on Large Scale Applications.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Ultra-Fast Silicon Detector 1 This report is a summary of what was shown at IEEE. Nicolo Cartiglia, INFN, Torino - UFSD - RD50 CERN 2014 Nicolo Cartiglia.
PPAC Jonathan Olson University of Iowa HCAL November 11-13, 2004.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Doses and bunch by bunch fluctuations in BeamCal at the ILC Eliza Teodorescu FCAL Collaboration Meeting June 29-30, 2009, DESY-Zeuthen, Germany.
A high rate fast precision tracking trigger with RPCs
High Energy Physics experiments.
Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors Lorenzo Vitale, Belle-II SVD collaboration INFN and Univ. Trieste, ITALY Requirements.
A high-Precision Timing ASIC for TOF-PET Applications
Laser and alpha particle characterization of floating-base BJT detector. Vladyslav Tyzhnevyia, Giovanni Batignanib, Luciano Bosisioc,Gian-Franco Dalla.
M. Brigida, F. de Palma, C. Favuzzi, P. Fusco, F. Gargano, N
The Transition Radiation Detector for the PAMELA Experiment
Forward Tagger Simulations
Results achieved so far to improve the RPC rate capability
INFN Pavia and University of Bergamo
Radiation Monitor: Concepts, Simulation for an Advanced Read Out
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
PSD Front-End-Electronics A.Ivashkin, V.Marin (INR, Moscow)
Comparison of GAMMA-400 and Fermi-LAT telescopes
DCH FEE 28 chs DCH prototype FEE &
GLAST LAT tracker signal simulation and trigger timing study
Front-end electronics Bis7-8
RD at RM3 RM3 setup Preliminary results APD UV extended
PADI for straw tube readout and diamonds for MIPs and for high precision tracking beam test – Jülich, Feb Jerzy Pietraszko, Michael Träger, Mircea.
LSO Cal Geant4 Simulation
Results from a preliminary analysis of the MWPC test at the GIF
FCPPL, Clermont-Ferrand , 8-10 April, 2014
大強度
RPC Front-end development
Electronics: Demod + 4Q FE
SVT detector electronics
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Department of Physics and Astronomy,
BESIII EMC electronics
Analog Front-end electronics for the outer layers of the SuperB SVT: design and expected performances Luca Bombelli1,2 on behalf of the SVT-SuperB Group.
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
GEANT Simulations and Track Reconstruction
Performance test of ACEM-detector (Aluminum Cathode Electron Multiplier) Marcus Palm AB-ATB-EA M. Palm, CERN.
Pre-installation Tests of the LHCb Muon Chambers
11th Pisa meeting on advanced detectors
Presentation transcript:

Radiation Monitor: Concepts, Simulation for an Advanced Read Out R.Cardarelli end A.Di Ciaccio INFN-Roma Tor Vergata Super-B Collaboration meeting 31/05/2012 Isola d’Elba La Biodola

Outline Location of the beam monitor in the Super-B detector Geant4 simulation to define the parameters of the monitor detector and F.E. electronic Test of a mono c. v.s. poli c. diamond detector with SiGe amplifier Conclusions and future plane

Radiation Monitor near SVT . Diamond detectors Primary goal: protect the SVT from high beam losses Next features: time of flight measurements to distinguish collisions events from background

Geant4 beam monitor simulation

Tentative detector shape R1 = 18.2 mm R = 18 mm L = 7 mm S = 1 mm R = 12 mm S = 1 mm

Geant4 results: rate per mm**2 for radiative Babbha Expected rate on Beam-monitor rings 1, 2 Bins da 1mm2 Highest rate about 0.25 MHz / mm2 (on Backward) Possible explanation : SuperB beam asymmetry Forw Back

Geant4 results : Edep Rate vs Edep Possible threshold at 150 KeV Violet band Particelle al minimo di ionizzazione

Geant4: time of flight 70 ps

Geant4 summary results L = 1 x 1036 cm-2 s-1 Rate (MHz) Edep/sec (GeV/s) nHits/Event Edep/Hit (GeV) Rate/mm2 (MHz/mm2) % Hits (>150KeV) Z (mm) Tube Ext (Back) 19.9 1780 0.09 9.0x10-5 0.035 22% -80 Tube Ext 2 (Back) 46.4 2080 0.20 4.5x10-5 0.082 10% -126 Tube Ext (Forw) 12.8 1115 0.06 8.7x10-5 0.023 21% 80 Tube Ext 2 (Forw) 30.0 1305 0.13 4.3x10-5 0.053 126

Diamond Detector (area 16mm**2) Rate/mm2 (MHz/mm2) Tube Ext (Back) 0.035 Tube Ext 2 (Back) 0.082 Tube Ext (Forw) 0.023 Tube Ext 2 (Forw) 0.053 CVD Parameters: traccolta: 20ns (on 1mm thickness) tintegr: 30ns Ethr > 150KeV max expected rate in selected regions for beam monitor 82 KHz /mm2 With a detector area of 16mm2 this corresponds to 1312 KHz Only 10% above 150KeV (only 130 KHz counted by the detector). 130 KHz corresponds to 0.3% electronics dead-time

Ionization currents on CVD diamonds Total Edep Edep/sec (GeV/s) Tube Ext (Back) 1780 Tube Ext 2 (Back) 2080 Tube Ext (Forw) 1115 Tube Ext 2 (Forw) 1305 Edep per mm2 al secondo N e-h pair / mm2 X s Area ring Current I per mm2 Energy necessary to produce a e-h pair in diamond For a sensor of 16mm2 an ionization corrente of 0.67 nA

geometry of the detector Diamond detector 4mm x 4mm 8 diamond detector for ring Beam monitor caracteristics L = 1 x 1036 cm-2 s-1 detector sized 8 X16 mm2 leakage current 8 nA Ionization current 0.67 nA hits rate 130KHz Detector Transit time 20 ns Electronic Integration time 30 ns Electric resistance 1011 Ωcm Energy threshold 150KeV Diamond detector 4mm x 4mm

Tentative electronic diagram Disipation power 8µW HV 500 Volt 100 kOhm 10m coax. Cable Ǿ = 0.7 mm Pico Amp Diamond detector amp Coincidence caunter CPU amp

BJT Si v.s. SiGe BJT Si BJT performances β=τc/τt ft=1/τt N= K*τt τc= base life time τt = base transient time τt (Si) >> τt (SiGe) diffusion Fermi energy B E C acceleration BJT SiGe Fermi energy B E C

Strategy for a new front-end(SiGe) A (mV) In signal A T(ns) F= 1 / T T(ns) 100 A (mV) Out signal 100 10 T(ns) 10 100 1000 ft F (MHz)

Amplifier, AC, (BJT SiGe, BFP740) Voltage supply 5 Volt Sensitivity 6 mV/fC noise 500 e- RMS Input impedance 50 Ohm B.W. 30 MHz Power consumption 10 mW/ch Low cost 2 – 3 eur./ch Radiation hardness 50 Mrad, 1015 n cm-2

Diamond detector under tests Mono crystal diamond thickness 0,5 mm Area 4 x 4 mm2 HV 400 Volt Dissipation power 8 μW

Current vs HV (sCVD- diamond detector)

Americium-241 + Sr-90 Am-241 Sr-90 noise

Coincidence with cosmics . 10ns Diamond detector PM

Coincidence with cosmics 2mV 5ns

Signal minimum ionization particle 20ns/div. 20ns/div.

Drift of the signal shape (s-CVD diamond)

Diamond detector under tests poly crystal diamond thickness 0,5 mm Area 4 x 4 mm2 HV 400 Volt Dissipation power 8 μW

Poly-CVD Diamond alfa-Am source ( log scale)

Idea on a new detector layout Transient time 5 ns Area 16 mm2 0.25 mm

Conclusions A Geant4 MC simulation of the SVT beam monitor was performed to determine Geometry Expected background rate Beam monitor FE electronics specification Next steps: further test of CVD diamonds (mono and poly-cristalline) with beams

Alfa Americium – 241 Alfa Americium-241 Noise

Amplifier, AC, (BJT SiGe, BFP650) Voltage supply 5 Volt Sensitivity 6 mV/fC noise 1000 e- RMS Input impedance 50 Ohm B.W. 30 MHz Power consumption 10 mW/ch Low cost 2 – 3 eur./ch Radiation hardness 50 Mrad, 1015 n cm-2

Alfa Americium – 241 Alfa Americium-241 noise

Amplificatore RC due stadi, AC, (BJT Si) Tensione di lavoro 5 Volt Sensibilita’ 6 mV/fC Rumore 4000 e RMS Impedenza di ingresso 50 Ohm B.W. 30 MHz

Simulazione Ove possibile, si sono utilizzate coppie vicine di volumi simili per ottenere un sampling più fine della rate attesa nella regione Tronco di cono inclinato per massimizzare il cammino della particella all’interno del volume

Signal minimum ionization particle 40ns/div.

Two stage ac amplifier, AC, (BJT Si BFQ67) Voltage supply 5 Volt Sensitivity 6 mV/fC noise 4000 e- RMS Input impedance 50 Ohm B.W. 30 MHz Power consumption 10 mW/ch Low cost 2 – 3 eur./ch

Noise distribution

Parametrizzazione dei rivelatori Calcolo della corrente di leakage su un sensore al diamante di 1mm x 1mm con una tensione applicata di 500V Resistenza offerta dal sensore Corrente di leakage che attraversa il sensore a fascio spento Per un sensore di 16mm2 si ottiene una corrente leakage di: 0.5x16 = 8 nA ovvero 80 x 10-10 A La corrente indotta dai fasci è 10 volte minore di quella di leakage quindi si richiede un elettronica in grado di rivelare piccole variazioni della corrente (almeno 1/10 della minima corrente da misurare)