Biotechnology for renewable energy and environmental protection Kornél KOVÁCS Dept. Biotechnology, Univ. Szeged Institute of Biophysics, BRC
BIOHYDROGEN
Need for alternative energy Fossil energy shortage Oil and natural gas: <30 years Coal: greenhouse effect Fossil energy Coal Oil and natural gas yr
Nukleáris energia: maghasadás / magfúzió Nuclear energy: nuclear fission / fusion Coal Wood Natural gas Oil Fission Solar yr
HYDROGEN METABOLISM Archeae, Eubacteria, Cyanobacteri, Algaea Enzymes Nitrogenase (N2 + 4H2 2 NH4+) Hydrogenase (2H+ + 2e- H2) Fe-only (e.g. Clostridium) [NiFe] No metal (methanogen)
Solar energy numbers Energy utilization today 1 Known fossil reserves 100 Coal ~ 80 Oil, natural gas ~ 20 Solar energy on Earth 10000 1 hour of Solar 1 year of use today
Several sources, one carrier: H2
BIOLOGICAL H2 PRODUCTION Hydrogenase Photosynthesis e- + H2O O2 2e- 2 H+ H2 2H+ Biomass e- 2 H+ H2
HYDROGEN METABOLISM Archeae, Eubacteria, Cyanobacteria, Algaea Enzymes Nitrogenase (N2 + 4H2 2 NH4+) Hydrogenase (2H+ + 2e- H2) Fe-only (e.g. Clostridium) [NiFe] No metal (methanogen)
MICROORGANISMS Thiocapsa roseopersicina Thermococcus litoralis, T. sibiricus Methylococcus capsulatus (Bath) Methylocaldum szegediense
HYDROGENASES Redox metalloenzymes Conserved sequence and structure [NiFe] + n [Fe4Sx] Conserved sequence and structure Very sensitive heat, oxygen, redox potential Biotechnology needs stable catalyst !!! H2 evolution biohydrogen H2 uptake fuel cell
Hydrogenase activity assay
Biohydrogen utilization evolution reduction ENERGY hydrogenase H2 uptake oxidation e- REDUCINGAGENT Biogas, denitrification, etc.
[NiFe] hydrogenases Heterodimer [NiFe] + CO/2CN 3 x [Fe4S4] 64kDa + 34kDa [NiFe] + CO/2CN on large subunit 3 x [Fe4S4] on small subunit 14-15 Angstrom apart
Thiocapsa roseopersicina BBS - phototrophic purple sulfur bacterium - max. growth temperature 30°C - anaerobic growth - isolated from cold sea water - [NiFe] hydrogenases H2 2H+ + 2e-
T. roseopersicina stable Hase pure enzyme whole cell Heat Oxygen Proteases Specific activity Temperature
LOCATION: Hyd / Hup / Hox Xred: GASH ? 2H+ PS ATP ? H2 HydL 2H+ 2e- Xox Xred ADP+Pi ATP HydS Isp1 Isp2 2e- + 2H+ N2ase 2H+ ATP ADP+Pi NH4+ 2e- N2 HupL HupS HupC 2H+ HoxH HoxY HoxU HoxF NAD+ NADH+H+ GASH:glutathion amide
Hydrogenase inventory Reaction catalysed: H2 2H+ + 2e- Stable Hase in the membrane: heat, protease hydS hydL isp2 isp1 hupS hupL hupC hupD hupH hup I hupR Unstable Hase in the membrane: why unstable? Hase in the cytoplasm: hydrogen evolution? hoxF hoxH hoxY huxU Hydrogen sensing Hase: oxygen, CO hupT hupU hupV Thiocapsa roseopersicina
Interposon mutagenesis of the hydrogenase structural genes sacB hydS isp1 isp2 hydL Sm strain:GB11 hupS hupL hupC hupD hupH hupI ORF-1 hupR sacB Gm strain: GB1121
GB1121: The first good H2 producing strain by hydrogenase enzyme 140 120 100 80 In vivo H2 production (%) 60 40 20 wild type double mutant HypF-mutant strains Non nitrogen-fixing conditions -there is at least one additional hydrogenase in Thiocapsa roseopersicina !
? In the GB1121 strain the H2 is produced by hydrogenase citoplasm PS ATP 2H+ H2 2H+ HydL HupL HydS HupS Isp1 2e- HupC Isp2 ADP+Pi ATP ADP+Pi NH4+ ATP 2e- 2e- + 2H+ ? N2 Xred Xox H2 N2ase Xred: GASH ? H2 citoplasm GASH: glutathion amide 2H+ soluble hydrogenase
3D MODELLING Only in HydSL Only in HupSL-ben Shared
Looking for stabilizing elements Random mutagenesis PCR errors (labor evolution) Chimeric enzymes DNS shuffling Site specific mutagenesis
Accessory genes R. capsulatus hup: W X T U V S L C D FG H J K R hyp: F A B D E
Applied gene transfer systems E. coli : donor T. roseopersicina: recipient mob Tn5 RP4 tra Site directed mutagenesis Normal conjugation Transposon Complementation
Screening H2 H2 + 2MV2+ 2MV+ + 2H+ Hydrogenase Heat treatment (optional) methyl-viologen 75 oC, 1-3h, air H2 H2 + 2MV2+ 2MV+ + 2H+ Hydrogenase
Mutagenesis studies Hase maturation = complex process Investigation: - mutation = loss of function - correction via complementation Wild Mutant hypF hupK hypC1 hypD hypE hypC2 hydD
polypeptide (HupL/HydL) Maturation / Assembly Large subunit polypeptide (HupL/HydL) Small subunit polypeptide (HupS/HydS) folding HypC Fex-Sx incorporation Fex-Sx cluster synthesis HypE, Fe? HypF (CO, CN) HypB (Ni) HypD HypD + HypC C-terminal peptidase (HupD/HydD) Membrane transport Tat-mechanisms active enzyme
Role of the HypC protein in the maturation process Small subunit C Cys Large subunit HypC
Role of the HypF auxiliary protein Cys HypC N C Cys Large subunit N Small subunit CN- CO HypF CN- (+HypE)
Role of the HypB and HypD proteins GTP GDP + Pi Ni HypB Cys HypC N C Cys Large subunit N Small subunit CO CN Fe HypD
In vivo hydorgen production (%) In vivo H2 production 700 600 500 400 In vivo hydorgen production (%) 300 200 100 wild type double mutant hypF- Nitrogen-fixing conditions
polypeptide (HupL/HydL) Maturation / Assembly Large subunit polypeptide (HupL/HydL) Small subunit polypeptide (HupS/HydS) folding HypC Fex-Sx incorporation Fex-Sx cluster synthesis HypE, Fe? HypF (CO, CN) HypB (Ni) HypD HypD + HypC C-terminal peptidase (HupD/HydD) Membrane transport Tat-mechanisms active enzyme
HypF- = Hyd- / Hup- / Hox- N2áz 2e- + 2H+ 2H+ ATP ADP+Pi NH4+ 2e- N2 HupL HupS HupC H2 HydL Xred HydS Isp1 Isp2 Xred: GASH ? PS ? GASH:glutation amide Nitrogenase Hydrogen is produced by the nitrogenase complex
Effect of the hupK deletion on the Hyd uptake activity 100 100 80 activity % 60 40 20 4,7 HupK- mutant wild type -measured on membrane fraction at 55 oC
Accessory genes R. capsulatus T. roseopersicina hup: W X T U V S L C D FG H J K R hyp: F A B D E T. roseopersicina (instabil) : struktural genes (hupS, hydS, hupL, hydL) : accessory genes in R.capsulatus : accessory genes in T. roseopersicina : accessory genes in both : pleiotrop genes (hyp) hyd: hup: (stabil) isp1 isp2 S L S L C D H I R hyp F C D E hup K hyd D
BioHyd EU project 2. óra anyaga itt! klikk!!