Date: 2016-4-29
Background [12] Shono, T. & Ikeda, A. J. Am. Chem. Soc. 94, 7892–7898 (1972) [14] Masui, M., Hosomi, K., Tsuchida, K. & Ozaki, S. Chem. Pharm. Bull. 33, 4798–4802 (1985).
Optimization Cooxidants (NHPI, pyridine, CH3CN): air(6%) bubbling O2 (18%) Bz2O2(0%) tBu2O2 (0%) H2O2(27%) tBuOOH(51%) PhC(CH3)2OOH(43%) Solvents (NHPI, tBuOOH, pyridine): CH3CN (51%) pyridine (40%) Acetone (56%) CH2Cl2 (21%) MeOH (trace) DMF (5%) DMSO (14%) HFIP (0%) EtOAc (trace) THF (trace) Bases (NHPI, tBuOOH, CH3CN): pyridine (51%) 2,6-lutidine (10%) 2,4,6-collidine (13%) Et3N (0%) DBU (0%) Li2CO3 (trace) Electrolyte (NHPI, tBuOOH, pyridine, acetone): LiClO4 (56%) LiBF4 (41%) Et4NClO4 (0%)
Optimization Mediators (tBuOOH, pyridine, acetone). Optimized electrochemical parameters: Cl4NHPI (0.2 equiv.), pyridine (2 equiv.), tBuOOH (1.5 equiv.), LiClO4 (0.6 equiv.), acetone (0.16 M in substrate), reticulated vitreous carbon electrodes, 10 mA per mmol of substrate. n.d., not detected.
Scope of the oxidation
Scope of the oxidation
Scope of the oxidation
Practicality
PGS assessment Process Greenness Score
Mechanism
Outlook Operational simplicity and high chemoselectivity Limitation Promising industrial application and synthetic utilization Limitation Not all acyclic alkenes give very high conversion