MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3

Slides:



Advertisements
Similar presentations
Fourier transform microwave spectrum of isobutyl mercaptan Kanagawa Institute of Technology 1 and The Graduate University for Advanced Studies 2 Yugo Tanaka,
Advertisements

MONITORING REACTION PRODUCTS USING CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY Derek S. Frank, Daniel A. Obenchain, Wei Lin, Stewart E. Novick,
Chirped-Pulse Broadband Microwave Spectra and Structures of the OCS Trimer and Tetramer Luca Evangelisti, Cristobal Perez, Nathan A. Seifert, Brooks H.
Determination of succinic acid structure in the gas phase by cm/mm spectroscopy Estíbaliz Méndez Alija University of The Basque Country, UPV/EHU, Spain.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
1 Broadband Chirped-Pulse Fourier- Transform Microwave (CP-FTMW) Spectroscopic Investigation of the Structures of Three Diethylsilane Conformers Amanda.
Observation of the weakly bound (HCl) 2 H 2 O cluster by chirped-pulse FTMW spectroscopy Zbigniew Kisiel, a Alberto Lesarri, b Justin Neill, c Matt Muckle,
DANIEL P. ZALESKI, JUSTIN L. NEILL, MATTHEW T. MUCKLE, AMANDA L. STEBER, NATHAN A. SEIFERT, AND BROOKS H. PATE Department of Chemistry, University of Virginia,
DANIEL P. ZALESKI, JUSTIN L. NEILL, AND BROOKS H. PATE Department of Chemistry, University of Virginia, McCormick Rd., P.O. Box , Charlottesville,
Microwave Spectrum of Hydrogen Bonded Hexafluoroisopropanol  water Complex Abhishek Shahi Prof. E. Arunan Group Department of Inorganic and Physical.
Physique des Lasers, Atomes et Molécules
Chirped-pulse, FTMW spectroscopy of the lactic acid-H 2 O system Zbigniew Kisiel, a Ewa Białkowska-Jaworska, a Daniel P. Zaleski, b Justin L. Neill, b.
Grupo de Espectroscopia Molecular, Unidad Asociada CSIC Laboratorios de Espectroscopia y Bioespectroscopia Edificio Quifima. Parque Científico Universidad.
Rotationally-Resolved Spectroscopy of the Bending Modes of Deuterated Water Dimer JACOB T. STEWART AND BENJAMIN J. MCCALL DEPARTMENT OF CHEMISTRY, UNIVERSITY.
Deuterated water hexamer observed by chirped-pulse rotational spectroscopy International Symposium on Molecular Spectroscopy, 69 th Meeting Champaign-Urbana,
Atusko Maeda, Ivan Medvedev, Eric Herbst,
Fourier transform microwave spectra of CO–dimethyl sulfide and CO–ethylene sulfide Akinori Sato, Yoshiyuki Kawashima and Eizi Hirota * The Graduate University.
Bri Gordon Steven T. Shipman New College of Florida
Conformational Flexibility in Hydrated Sugars: The Glycolaldehyde-Water Complex Juan-Ramon Aviles-Moreno, Jean Demaison and Thérèse R. Huet Laboratoire.
THE MICROWAVE STUDIES OF GUAIACOL (2-METHOXYPHENOL), ITS ISOTOPOLOGUES & VAN DER WAALS COMPLEXES Ranil M. Gurusinghe, Ashley Fox and Michael J. Tubergen,
Effective C 2v Symmetry in the Dimethyl Ether–Acetylene Dimer Sean A. Peebles, Josh J. Newby, Michal M. Serafin, and Rebecca A. Peebles Department of Chemistry,
Structure Determination of Two Stereoisomers of Sevoflurane Dimer by CP-FTMW Spectroscopy Nathan A. Seifert, Cristobal Perez, Daniel P. Zaleski, Justin.
Enantiomer Identification in Chiral Mixtures with Broadband Microwave Spectroscopy V. Alvin Shubert a, David Schmitz a, Chris Medcraft a, Anna Krin a,
Perfluorobutyric acid and its monohydrate: a chirped pulse and cavity based Fourier transform microwave spectroscopic study Javix Thomas a, Agapito Serrato.
The Ohio State University International Symposium on Molecular Spectroscopy 68th Meeting - - June 17-21, 2013 Microwave Spectrum of Hexafluoroisopropanol,
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
Microwave Spectrum of the Ethanol-Water Dimer
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Intermolecular Interactions between Formaldehyde and Dimethyl Ether and between Formaldehyde and Dimethyl Sulfide in the Complex, Investigated by Fourier.
The rotational spectra of helium- pyridine and hydrogen molecule- pyridine clusters Chakree Tanjaroon and Wolfgang Jäger.
Broadband Microwave Spectroscopy to Study the Structure of Odorant Molecules and of Complexes in the Gas Phase Sabrina Zinn, Chris Medcraft, Thomas Betz,
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Chirped-Pulse Microwave Spectroscopy in the Undergraduate Chemistry Curriculum Sydney Gaster, Taylor Hall, Sean Arnold, Deondre Parks, Gordon Brown Department.
Microwave and Ab Initio Investigations of CHCl 2 F-OCS and Related Hydrochlorofluorocarbon Complexes Rebecca A. Peebles and Amanda L. Steber Department.
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Nathan Seifert, Wolfgang Jäger University of Alberta
CRISTOBAL PEREZ, MARINA SEKUTOR, ANDREY A
Max Planck Institute for the Structure and Dynamics of Matter
AMANDA L. STEBER, MARIYAM FATIMA, CRISTÓBAL PÉREZ, and MELANIE SCHNELL
72nd International Symposium on Molecular Spectroscopy, 6/20/2017
Angelo Perera, Javix Thomas, Christian Merten,a and Yunjie Xu
The microwave spectroscopy study of 1,2-dimethoxyethane
Juliane Heitkämper, John C Mullaney, Nick Walker
ROTATIONAL SPECTROSCOPY OF THE METHYL GLYCIDATE-WATER COMPLEX
Microwave and infrared spectra of urethane
72nd International Symposium on Molecular Spectroscopy (ISMS 2017)
Characterisation and Control of Cold Chiral Compounds
Carlos Cabezas and Yasuki Endo
L. Evangelisti,a,c C. Perez,b,c B.H. Patec
V. Ilyushin1, I. Armieieva1, O. Zakharenko2, H. S. P. Müller2, F
Characterization of Intermolecular Interactions in the
G. S. Grubbs II*, S. A. Cooke⧧, and Stewart E. Novick*,
Chirped pulse rotational spectroscopy
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Broadband Microwave Spectrum & Structure of Cyclopropyl Cyanosilane
The Effect of Protic Acid Identity on the Structures of Complexes with Vinyl Chloride: Fourier Transform Microwave Spectroscopy and Molecular Structure.
CHIRPED-PULSE FOURIER TRANSFORM MICROWAVE SPECTROSCOPY OF
Department of Chemistry
A STUDY OF THE FORMAMIDE-(H2O)3 COMPLEX BY MICROWAVE SPECTROSCOPY
The Rotational Spectrum of cis- and trans-HSSOH
THE STRUCTURE OF PHENYLGLYCINOL
Fourier transform microwave spectra of n-butanol and isobutanol
THE STUDY OF ACENAPHTHENE AND ITS COMPLEXATION WITH WATER
Observation of Trans-Ethanol and
The rotational spectrum of the urea isocyanic acid complex
BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY DISPERSION INTERACTIONS IN CAMPHOR-ALCOHOL SYSTEMS MARIYAM FATIMA, CRISTÓBAL PÉREZ, MELANIE SCHNELL,
Aaron M. Pejlovas, Onur Oncer, and Dr. Stephen G. Kukolich
Michal M. Serafin, Sean A. Peebles
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
Elias M. NEEMAN and Thérèse R. HUET
Presentation transcript:

MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3 BROADBAND MICROWAVE SPECTROSCOPY AS A TOOL TO STUDY INTERMOLECULAR INTERACTIONS IN THE DIPHENYLETHER - WATER SYSTEM MARIYAM FATIMA 1,2,3, CRISTÓBAL PÉREZ1,2,3 , MELANIE SCHNELL 1,2,3 1 Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany, 2Deutsches Elektronen-Synchrotron, Hamburg, Germany 3Christian-Albrechts-Universität zu Kiel, Kiel, Germany

INTRODUCTION DIPHENYLETHER (DPE) φ1 φ2 twist φ1 ≈ φ2 ≈ 41° ∆E=0 kJ/mol O---H φ1 ≈ φ2 ≈ 41° ∆E=0 kJ/mol π skew φ1 = 90°, φ2 = 0° ∆E=1 kJ/mol Floppy molecule Two stable conformers (twist, skew) Most stable: twist conformer Offers two different docking sites for intermolecular interaction n = 1, 2, 3 WATER

CHIRPED PULSE MICROWAVE SPECTROSCOPY Sample introduction 2-8 GHz 20 kHz linewidth Microwave Horn Antenna (Receiver) Supersonic Expansions Microwave Horn Antenna (Emitter) Backing pressure of neon: 3 bar Temperature for diphenylether: 90° C

DIPHENYLETHER-WATER (I): AB INITIO RESULTS OH---O OH---π ∆E=1.4 kJ/mol ∆E=0 kJ/mol Calculated at B3LYP-D3/aug-cc-pVTZ

DIPHENYLETHER-WATER (I): EXPERIMENTAL RESULTS 5 million acquisitions, 19 hours measurement Other lines from DPE monomer, 13C’s of DPE- water (I), DPE-water (II), DPE-water (III)

DIPHENYLETHER-WATER (I): RESULTS OH---π   State 0- State 0+ B3LYP-D3/aug-cc-pVTZ MP2/6-311G++(d,p) A(MHz) 1359.68029(42) 1362.4557(11) 1414.67 1377.04 B(MHz) 409.24121(14) 409.12297(45) 404.91 413.82 C (MHz) 365.31297(13) 365.43020(43) 366.04 370.50 ∆J (kHz) 0.02233(85) 0.0235(24) ∆JK (kHz) 0.2683(48) 0.263(21) µa/µb/µc (D) 0.6/1.1/0.8 1.5/0.13/0.15 σ (kHz) 5.6 6.6 Nlines a 95 (71/0/24) 78 (57/0/21) a The number of fitted lines.

DIPHENYLETHER-WATER (I): RESULTS b a c OH---O   Experiment (b type) B3LYP-D3/aug-cc-pVTZ A(MHz) 1062.0824 1096.08 B(MHz) 434.2999 429.67 C (MHz) 343.60408 341.38 µa/µb/µc (D) 1.3/2.5/0.6 Nlines a 29 a The number of fitted lines.

DIPHENYLETHER-WATER (II): EXPERIMENTAL RESULTS S/N ratio for DPE-water (II) is 450:1

DIPHENYLETHER-WATER (II): AB INITIO RESULTS Calculated at B3LYP-D3/aug-cc-pVTZ

DIPHENYLETHER-WATER (II): RESULTS   Experiment B3LYP-D3/aug-cc-pVTZ A(MHz) 823.80379(24) 850.51 B(MHz) 390.51117(13) 391.08 C (MHz) 334.18534(13) 335.29 ∆J (kHz) 0.02964(86) ∆JK (kHz) 0.1766(34) ∆K (kHz) 0.6324(47) δJ 0.00787(31) δK 0.142(12) µa/µb/µc (D) 1.4/1.6/1.4 σ (kHz) 9.9 Nlines a 294 (81/119/94) a The number of fitted lines.

DIPHENYLETHER-WATER: EXPERIMENTAL STRUCTURES H218O measurement to find the experimental positions of water Experimental structural positions obtained from Kraitchman method vs results from B3LYP-D3/aug-cc-pVTZ

DIPHENYLETHER-WATER (III): EXPERIMENTAL RESULTS

DIPHENYLETHER-WATER (III): AB INITIO RESULTS

DIPHENYLETHER-WATER (III): RESULTS   Experiment B3LYP-D3/aug-cc-pVTZ A(MHz) 621.58779(33) 651.20 B(MHz) 358.17136(13) 354.10 C (MHz) 279.70640(12) 282.18 ∆J (kHz) 0.02406(56) ∆K (kHz) 0.331(11) δJ (kHz) 0.00814(37) µa/µb/µc (D) 1.3/1.8/1.8 σ (kHz) 6.9 Nlines a 190 (68/69/53) a The number of fitted lines.

CONCLUSION: DIPHENYLETHER-WATER skew twist φ1 φ2 φ1 = 90° φ2 = 0° φ1 ≈ φ2 ≈ 41° ∆E=0 kJ/mol ∆E=1 kJ/mol OH-π OH-O φ1 = 47° φ2 = 35° φ1 = 50° φ2 = 31° DPE-water (II) DPE-water (III) φ1 = 70° φ2 = 19° φ1 = 87° φ2 = 7°

CONCLUSIONS AND OUTLOOK Identified diphenylether-water complexes up to three molecules of water. Addition of water molecule changes the structure of diphenylether from most stable twist structure to skew structure (∆E = 1kJ/mol). Increase in the intermolecular interaction is stabilizing skew structure of diphenylether. b a c

ACKNOWLEGEMENTS Benjamin Arenas MF07 Sérgio Domingos TC03 Cristóbal Pérez TE09, WG08 Melanie Schnell RG11 Anna Krin RG02 Amanda Steber TH02 Sébastien Gruet WD07

THANK YOU