Graphing Sine & Cosine Objectives:

Slides:



Advertisements
Similar presentations
7.8 Sinusoidal Graphs.
Advertisements

Notes Over 6.4 Graph Sine, Cosine Functions Notes Over 6.4 Graph Sine, Cosine, and Tangent Functions Equation of a Sine Function Amplitude Period Complete.
Graphs of the Sine and Cosine Functions Section 4.5.
Graphing Sine and Cosine. Graphing Calculator Mode— Radians Par Simul Window— –X min = -1 –X max = 2  –X scale =  /2 Window— –Y min = -3 –Y max = 3.
Graphing Sine and Cosine. Video Graphing Calculator Mode— Radians Par Simul Window— –X min = -1 –X max = 2  –X scale =  /2 Window— –Y min = -3 –Y max.
Starter.
Objective Recognize and graph periodic and trigonometric sine and cosine functions.
4.5 Sinusoidal Graphs Sketching and Writing Equations.
Graphs of the Sine and Cosine Functions
State the amplitude and period for each function
Graphing Cosecant and Secant. Using the Graphing Calculator Mode— Radians Function Sequential Window— –X min = -  –X max = 3  –X scale =  /6 Window—
Section 5.3 Trigonometric Graphs
Chp. 4.5 Graphs of Sine and Cosine Functions p. 323.
Warm Ups: Quiz Review Write a rule for “g” and identify the vertex: 1) Let “g” be a translation 2 units up followed by a reflection in the x – axis and.
Graphs of Sine and Cosine
Translations of Sine and Cosine Functions
December 4, 2012 Using Translations on Sine and Cosine Curves Warm-up: 1. What is the domain for ? 2.Write the equation, then state the domain and range.
4.4 Graphing sin and cos Functions. 5–Minute Check 1 Let (–5, 12) be a point on the terminal side of an angle θ in standard position. Find the exact values.
f(x) + a x y = f(x) Graphs of Related Functions (1) f(x) = x 2 f(x) +2= x f(x) - 5 = x Vertical Translations.
November 29, 2012 Period and Amplitude of the Sine and Cosine Functions Warm-up: Finish Sine and Cosine Function Activity (15 minutes) HW 4.5: Pg
Graphs of Trigonometric Functions. Properties of Sine and Cosine Functions 2 6. The cycle repeats itself indefinitely in both directions of the x-axis.
Graphing Trigonometric Functions Chapter 4. The sine and cosine curves Graph y = sinx.
Warm up Use the Pythagorean identity to determine if the point (.623,.377) is on the circumference of the unit circle Using Pythagorean identity, solve.
November 29, 2011 At the end of today you will be able to understand where the sine and cosine curve derive from. DO NOW: Discuss Final Review Questions.
Essential Question: What are the period and amplitude of the sine/cosine function? How do you find them? How do you graph sine and cos? Students will write.
Label each of the following graphs with the appropriate function. Calculator should be set to radians. Window Xscl should be set to pi. The amplitude equals:
5.3 Part 1 Trig Graphs A function is periodic if its values repeat in a cycle. Sin and Cos functions repeat their values in a regular fashion. Since.
Graphs of Cosine Functions (part 2)
Transformations of the Graphs of Sine and Cosine Functions
Properties of Sine and Cosine Functions
Trigonometric Graphs 6.2.
Transformations of the Graphs of Sine and Cosine Functions
2.7 Sinusoidal Graphs; Curve Fitting
Objective: Graphs of sine and cosine functions with translations.
Graphs of Sine and Cosine Functions
Graphing SinE and Cosine FUnctions
Graphs of Trig Functions
Warm Up Evaluate Find the measure of the reference angle for each given angle that would be on the unit circle ° 5.
Chapter 4: Lesson 4.5 Graphs of Sine and Cosine Functions
Transformations of the Graphs of Sine and Cosine Functions
Trigonometric Graphs 1.6 Day 1.
Work on worksheet with 8 multiple choice questions.
Chapter 7/8: Sinusoidal Functions of Sine and Cosine
Amplitude, Period, and Phase Shift
Graphs of Trigonometric Functions
Trigonometric Functions
Translations of Sine and Cosine Functions
Amplitude, Period, & Phase Shift
6-5 Translating Sine and Cosine
Graphing Trig Functions
Notes Over 6.4 Graph Sine, Cosine Functions.
Graphs of Trigonometric Functions
Warm-up: Welcome Ticket
Homework Questions.
Warm Up Get your Spaghetti Sine projects off the shelf and return to your partner. Do not continue working on the project, rather, answer the questions.
4.4 Graphs of Sine and Cosine Functions
Look over Unit Circle! Quiz in 5 minutes!!
4.2 – Translations of the Graphs of the Sine and Cosine Functions
Graphs of Sine and Cosine
Graphs of Sine and Cosine: Sinusoids
4.5 Graphs of Sine and Cosine Functions
Graphs of Sine and Cosine Functions
Sinusoidal Functions of Sine and Cosine
T5.1d To Graph Vertical Translation
Graphs of Sine and Cosine Sinusoids
Warm-up: For the following equation, give the required values and graph. For the shifts, give direction as well as units of translation. If there is.
T5.1b To Graph the Cosine Curve Do not say the answers out loud!!!
7.4 Periodic Graphs & Phase Shifts Objectives:
Graphs of Sine and Cosine Functions
Trigonometric Functions
Presentation transcript:

Graphing Sine & Cosine Objectives: Be able to find the amplitude, period, stretch and shrink of sine & cosine. Be able to compare two curves. Be able to graph a sine & cosine curve. TS: Making Decisions After Reflection & Review Warm-Up: Given y = 4sin(2x), what is the amplitude and period? Think back to last year!!! Amplitude = Period =

Recall Period and Amplitude Amplitude = Phase Shift (horizontal translation) = Period = Vertical Translation = Graphs of f(x) = sin(x) & g(x) = cos(x)

What’s the amp, period, VT & PS?

Requirements of a graph: Both axes shown, labeled with correct variables, and appropriately scaled. One set of 5 key points (min, max and mid-line values) labeled for one period. Extend the graph 2 full periods (on a quiz it will be expected to be exactly 2 periods so as to show an understanding of what the period is). You also need to be able to identify the period length, amplitude, phase shift (a.k.a horizontal translation) and vertical translation (a.k.a the midline).

Graph

Graph

Graph

Graph

Notecard Activity/Practice On a scrap piece of paper, come up with a sine or cosine equation which you can graph. Graph your equation on the scrap paper. Check your answer with your calculator by changing your window to match the portion of the graph you have drawn. On the index card, put your equation on one side and the graph on the other side. (put your name, in small print, near the top of the card) Exchange cards with the student next to you and try their graph and check your answer using the back. Put your name on the card you completed. Repeat using a new card. Turn in the cards at the end of class.