METABOLISM OF LIPIDS: SYNTHESIS OF FATTY ACIDS

Slides:



Advertisements
Similar presentations
Section K Lipid Metabolism
Advertisements

Fatty Acid Synthesis Copyright © by Joyce J. Diwan. All rights reserved. Molecular Biochemistry II.
 It can be divided into 3 processes: 1)Biosynthesis of glycerol. 2)Biosynthesis of fatty acids. 3)Biosynthesis of the triacylglycerol.  It occurs in.
Lipid Biosynthesis C483 Spring Which of these is NOT a difference between fatty acid synthesis and beta oxidation? A)Synthesis requires an enzyme.
Fatty acid catabolism Lipid biosynthesis
BC368 Fatty Acid Synthesis Chapter 21 (21.1 only) April 28, 2015.
Synthesis of Triglycerides
Lipogenesis Fats not only obtained from the diet but also obtained from lipogenesis in the body. Lipogenesis means synthesis of fats from CHO and proteins.
BIOC 460 DR. TISCHLER LECTURE 34 SYNTHESIS & PROCESSING OF FATS.
Introduction  lipids are a good source of energy as 1 gm supplies 9.1 calories, which is over double that supplied by carbohydrates or protein.  Dietary.
1 Metabolic Pathways for Lipids. Ketogenesis and Ketone Bodies. Fatty Acid Synthesis.
Lipid Metabolism 2: Acetyl-CoA carboxylase, fatty acid synthase reaction, and regulation of fatty acid synthesis Bioc 460 Spring Lecture 36 (Miesfeld)
Chapter 16 (Part 3) Fatty acid Synthesis.
1 Fatty Acid Metabolism. 2 Free Energy of Oxidation of Carbon Compounds.
Lipid Metabolism 2: Acetyl-CoA carboxylase, fatty acid synthase reaction, and regulation of fatty acid synthesis Bioc 460 Spring Lecture 36 (Miesfeld)
Pratt & Cornely, Chapter 17
ATP-dependent carboxylation provides energy input. The CO 2 is lost later during condensation with the growing fatty acid. The spontaneous decarboxylation.
Chem 454: Biochemistry II University of Wisconsin-Eau Claire Chem 454: Biochemistry II University of Wisconsin-Eau Claire Chapter 22. Fatty Acid Metabolism.
Metabolism of lipids: tryacylglycerols, fatty acids, cholesterol and phospholipids metabolism. Ketogenesis and ketolysis. Regulation and pathology of lipid.
Biosynthesis of Fatty Acids Medical Biochemistry Lecture #46.
Section 7. Lipid Metabolism
BIOSYNTHESIS OF FATTY ACIDS Hendra Wijaya Esa unggul University.
Chapter 23 Fatty Acid Metabolism Denniston Topping Caret 5th Edition
Fatty Acid Oxidation.
* Lipid Biosynthesis - These are endergonic and reductive reactions, use ATP as source of energy and reduced electron carrier usually NADPH as reductant.
Lipid Biosynthesis (Chapter 21) Fatty acid biosynthesis and oxidation proceed by distinct pathways, catalyzed by different enzymes, using different cofactors.
ECDA SEPT LIPOGENESIS  Fatty acids are formed by the action of fatty acid synthase from acetyl-CoA and malonyl-CoA (a 3- carbon compound) precursors.
Reginald H. Garrett Charles M. Grisham Chapter 24 Lipid Biosynthesis.
LIPID METABOLISM BIOSYNTHESIS or DE NOVO SYNTHESIS OF FATTY ACID The majority of the fatty acids required supplied through our diet. Fatty acids are synthesised.
Fatty Acid Metabolism. Why are fatty acids important to cells? fuel molecules stored as triacylglycerols building blocks phospholipids glycolipids precursors.
Oxidation and biosynthesis of fatty acids
Chapter 28, Stryer Short Course
BIOCHEMISTRY LECTURES. Figure Stages in the extraction of energy from foodstuffs.
23-1 Principles and Applications of Inorganic, Organic, and Biological Chemistry Denniston,Topping, and Caret 4 th ed Chapter 23 Copyright © The McGraw-Hill.
Lipogenesis Fats not only obtained from the diet but also obtained from lipogenesis in the body. Lipogenesis means synthesis of neutral fats (TAG) from.
Biochemistry: A Short Course Second Edition Tymoczko Berg Stryer CHAPTER 27 Fatty Acid Degradation.
Synthesis of Fatty acid Dr Vivek Joshi,MD.  Main pathway - cytosol  Occurs primarily in the liver and lactating mammary gland, less so in adipose tissue.
Lecture 12 Fatty Acyl Synthase and Pentose Phosphate Pathway.
Sources pof energy in fasting state In adipose tissue: In fasting state, the stored TAG will be the major source of energy. -Stored TAG in adipose tissue.
RR PKA Hormone-sensitive lipase TAG DAG MAG glycerol FFA Hormone-sensitive lipase P See Fig 16.7 Horton Fat mobilization in adipocytes Note: insulin.
Fatty Acid Metabolism 1. Fatty acid synthesis.
Pratt & Cornely, Chapter 17
Lipogenesis & Lipolysis
Hormonal regulation of lipid metabolism
Biochemistry department
24.2 Oxidation of Fatty Acids
OXIDATION OF FATTY ACIDS
Beta Oxidation of Fatty Acids PROF. S. KAJUNA
LIPID SYNTHESIS.
GLUCONEOGENESIS Synthesis of glucose from noncarbohydrate precursors
Aerobic Metabolism: The Citric Acid Cycle
Fatty acid synthesis (Lipogenesis & Lipolysis)
FATTY ACID BIOSYNTHESIS
Biosynthesis of Fatty Acid
FATTY ACID METABOLISM.
Fatty Acid Biosynthesis
Lipid Metabolism.
Kshitiz Raj Shrestha Lecturer, Biochemistry
LIPID BIOSYNTHESIS.
Fatty Acid Metabolism Dr. Kevin Ahern.
How Cells Obtain Energy from Food
Lipid/Fat metabolism Chapter 4
Prof. Dr. Zeliha Büyükbingöl
24.5 Fatty Acid Synthesis When the body has met all its energy needs and the glycogen stores are full, acetyl CoA from the breakdown of carbohydrates and.
Chapter Twenty-One Lipid Metabolism.
Lipid/Fat metabolism Chapter 4
Chapter Twenty-One Lipid Metabolism.
UNIT 4.2 METABOLISM OF FAT.
Presentation transcript:

METABOLISM OF LIPIDS: SYNTHESIS OF FATTY ACIDS

Fatty Acid Synthesis Occurs mainly in liver and adipocytes, in mammary glands during lactation Occurs in cytoplasm FA synthesis and degradation occur by two completely separate pathways When glucose is plentiful, large amounts of acetyl CoA are produced by glycolysis and can be used for fatty acid synthesis

Three stages of fatty acid synthesis: A. Transport of acetyl CoA into cytosol B. Carboxylation of acetyl CoA C. Assembly of fatty acid chain

A. Transport of Acetyl CoA to the Cytosol Acetyl CoA from catabolism of carbohydrates and amino acids is exported from mitochondria via the citrate transport system Cytosolic NADH also converted to NADPH Two molecules of ATP are expended for each round of this cyclic pathway

Citrate transport system

Sources of NADPH for Fatty Acid Synthesis 1. One molecule of NADPH is generated for each molecule of acetyl CoA that is transferred from mitochondria to the cytosol (malic enzyme). 2. NADPH molecules come from the pentose phosphate pathway.

B. Carboxylation of Acetyl CoA Enzyme: acetyl CoA carboxylase Prosthetic group - biotin A carboxybiotin intermediate is formed. ATP is hydrolyzed. The CO2 group in carboxybiotin is transferred to acetyl CoA to form malonyl CoA. Acetyl CoA carboxylase is the regulatory enzyme.

C. The Reactions of Fatty Acid Synthesis Five separate stages: (1) Loading of precursors via thioester derivatives (2) Condensation of the precursors (3) Reduction (4) Dehydration (5) Reduction

During the fatty acid synthesis all intermediates are linked to the protein called acyl carrier protein (ACP-SH), which is the component of fatty acyl synthase complex. The pantothenic acid is a component of ACP. Intermediates in the biosynthetic pathway are attached to the sulfhydryl terminus of phosphopantotheine group.

The elongation phase of fatty acid synthesis starts with the formation of acetyl ACP and malonyl ACP. Acetyl transacylase and malonyl transacylase catalyze these reactions. Acetyl CoA + ACP  acetyl ACP + CoA Malonyl CoA + ACP  malonyl ACP + CoA

Condensation reaction. Acetyl ACP and malonyl ACP react to form acetoacetyl ACP. Enzyme - acyl-malonyl ACP condensing enzyme.

Reduction. Acetoacetyl ACP is reduced to D-3-hydroxybutyryl ACP. NADPH is the reducing agent Enzyme: -ketoacyl ACP reductase

Dehydration. D-3-hydroxybutyryl ACP is dehydrated to form crotonyl ACP (trans-2-enoyl ACP). Enzyme: 3-hydroxyacyl ACP dehydratase

Reduction. The final step in the cycle reduces crotonyl ACP to butyryl ACP. NADPH is reductant. Enzyme - enoyl ACP reductase. This is the end of first elongation cycle (first round).

In the second round butyryl ACP condenses with malonyl ACP to form a C6--ketoacyl ACP. Reduction, dehydration, and a second reduction convert the C6--ketoacyl ACP into a C6-acyl ACP, which is ready for a third round of elongation.

Final reaction of FA synthesis Rounds of synthesis continue until a C16 palmitoyl group is formed Palmitoyl-ACP is hydrolyzed by a thioesterase Overall reaction of palmitate synthesis from acetyl CoA and malonyl CoA Acetyl CoA + 7 Malonyl CoA + 14 NADPH + 14 H+ Palmitate + 7 CO2 + 14 NADP+ + 8 HS-CoA + 6 H2O

Organization of Multifunctional Enzyme Complex in Eukaryotes The synthase is dimer with antiparallel subunits. Each subunit has three domains. ACP is located in domain 2. Domain 1 contains transacylases, ketoacyl-ACP synthase (condensing enzyme) Domain 2 contains acyl carrier protein, -ketoacyl reductase, dehydratase, and enoyl reductase. Domain 3 contains thioesterase activity.

Fatty Acid Elongation and Desaturation The common product of fatty acid synthesis is palmitate (16:0). Cells contain longer fatty acids and unsaturated fatty acids they are synthesized in the endoplasmic reticulum. The reactions of elongation are similar to the ones seen with fatty acid synthase (new carbons are added in the form of malonyl CoA). For the formation of unsaturated fatty acids there are various desaturases catalizing the formation of double bonds.

THE CONTROL OF FATTY ACID METABOLISM Acetyl CoA carboxylase plays an essential role in regulating fatty acid synthesis and degradation. The carboxylase is controlled by hormones: glucagon, epinephrine, and insulin. Another regulatory factors: citrate, palmitoyl CoA, and AMP

is carried out by means of reversible phosphorylation Global Regulation is carried out by means of reversible phosphorylation Acetyl CoA carboxylase is switched off by phosphorylation and activated by dephosphorylation Insulin stimulates fatty acid synthesis causing dephosphorylation of carboxylase. Glucagon and epinephrine have the reverse effect (keep the carboxylase in the inactive phosphorylated state). Protein kinase is activated by AMP and inhibited by ATP. Carboxylase is inactivated when the energy charge is low.

Local Regulation Acetyl CoA carboxylase is allosterically stimulated by citrate. The level of citrate is high when both acetyl CoA and ATP are abundant (isocitrate dehydrogenase is inhibited by ATP). Palmitoyl CoA inhibits carboxylase.

Response to Diet Fed state: Starvation: Insulin level is increased Inhibits hydrolysis of stored TGs Stimulates formation of malonyl CoA, which inhibits carnitine acyltransferase I FA remain in cytosol (FA oxidation enzymes are in the mitochondria) Starvation: Epinephrine and glucagon are produced and stimulate adipose cell lipase and the level of free fatty acids rises Inactivate carboxylase, so decrease formation of malonyl CoA (lead to increased transport of FA into mitochondria and activate the b-oxidation pathway)