CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.2

Slides:



Advertisements
Similar presentations
Templates CS 5010 Program Design Paradigms “Bootcamp” Lesson
Advertisements

Sometimes Structural Recursion Isn't Enough CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.1 TexPoint fonts used in EMF. Read the TexPoint manual.
Two Draggable Cats CS 5010 Program Design Paradigms “Bootcamp” Lesson 3.4 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Lists vs. Structures CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.1 © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial.
Basics of Inheritance CS 5010 Program Design Paradigms "Bootcamp" Lesson 12.1 © Mitchell Wand, This work is licensed under a Creative Commons.
Midterm Review CS 5010 Program Design Paradigms “Bootcamp” Lesson 9.4 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Classes, Objects, and Methods CS 5010 Program Design Paradigms "Bootcamp" Lesson 10.1 © Mitchell Wand, This work is licensed under a Creative.
Multi-way Trees CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.6 © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial.
Structural Decomposition CS 5010 Program Design Paradigms “Bootcamp” Lesson 2.1 © Mitchell Wand, This work is licensed under a Creative Commons.
Introducing General Recursion CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.2 TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Trees CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.2 © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial.
Mutually-Recursive Data Definitions CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.4 © Mitchell Wand, This work is licensed under a Creative.
Lists of Lists CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial.
From Templates to Folds CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under a Creative Commons.
Patterns of Communication Between Objects CS 5010 Program Design Paradigms "Bootcamp" Lesson 11.1 © Mitchell Wand, This work is licensed under.
Solving Your Problem by Generalization CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.1 © Mitchell Wand, This work is licensed under a.
Examining Two Pieces of Data CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under a Creative.
The Design Recipe using Classes CS 5010 Program Design Paradigms "Bootcamp" Lesson 10.5 © Mitchell Wand, This work is licensed under a Creative.
Design Strategies 2: Using a template CS 5010 Program Design Paradigms “Bootcamp” Lesson 2.1 © Mitchell Wand, This work is licensed under a Creative.
More examples of invariants CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under a Creative.
Lists of Structures CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Destructor Templates CS 5010 Program Design Paradigms “Bootcamp” Lesson
Searching in a Graph CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
Solving Your Problem by Generalization CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.1 © Mitchell Wand, This work is licensed under a.
The Design Recipe using Classes CS 5010 Program Design Paradigms "Bootcamp" Lesson © Mitchell Wand, This work is licensed under a Creative.
Lists vs. Structures CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under a Creative Commons.
The DD  OO Recipe CS 5010 Program Design Paradigms "Bootcamp" Lesson 10.4 © Mitchell Wand, This work is licensed under a Creative Commons Attribution-NonCommercial.
Halting Measures and Termination Arguments CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual.
Non-Empty Lists CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Using the List Template CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Using the List Template CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.2 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this.
More linear search with invariants CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before.
Midterm Review CS 5010 Program Design Paradigms “Bootcamp” Lesson TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.:
Solving Your Problem by Generalization CS 5010 Program Design Paradigms “Bootcamp” Lesson © Mitchell Wand, This work is licensed under.
Classes, Objects, and Interfaces CS 5010 Program Design Paradigms "Bootcamp" Lesson © Mitchell Wand, This work is licensed under a Creative.
How to use an Observer Template
CS 5010 Program Design Paradigms “Bootcamp” Lesson 2.2
Generalizing Similar Functions
CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.2
Examining Two Pieces of Data
CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.4
More About Recursive Data Types
CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.3
CS 5010 Program Design Paradigms “Bootcamp” Lesson 1.3
More Recursive Data Types
CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.7
Halting Functions for Tree-Like Structures
CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.1
CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.3
CS 5010 Program Design Paradigms “Bootcamp” Lesson 5.1
From Templates to Folds
The Different Kinds of Data
CS 5010 Program Design Paradigms “Bootcamp” Lesson 3.4
CS 5010 Program Design Paradigms "Bootcamp" Lesson 9.3
Case Study: Undefined Variables
CS 5010 Program Design Paradigms “Bootcamp” Lesson 7.5
Solving Your Problem by Generalization
Contracts, Purpose Statements, Examples and Tests
CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.5
More examples of invariants
ormap, andmap, and filter
Generalizing Similar Functions
The Iterative Design Recipe
Rewriting your function using map and foldr
Examining Two Pieces of Data
CS 5010 Program Design Paradigms “Bootcamp” Lesson 4.1
CS 5010 Program Design Paradigms “Bootcamp” Lesson 8.3
Design Strategies 3: Divide into cases
Presentation transcript:

CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.2 Trees CS 5010 Program Design Paradigms “Bootcamp” Lesson 6.2 © Mitchell Wand, 2012-2014 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Introduction/Outline Many examples of information have a natural structure which is not a sequence, but is rather a tree, which you should have learned about in your data structures course. In this lesson, we'll study how to apply the Design Recipe to trees.

Learning Objectives At the end of this lesson you should be able to: Write a data definition for tree-structured information Write a template for tree-structured information Write functions that manipulate that data, using the template

Binary Trees (define-struct leaf (datum)) (define-struct node (lson rson)) ;; A Tree is either ;; -- (make-leaf Number) ;; -- (make-node Tree Tree) There are many ways to define binary trees. We choose this one because it is clear and simple.

Template Here's the template for this data definition. Observe that we have two self-references in the template, corresponding to the two self-references in the data definition. tree-fn : Tree -> ??? (define (tree-fn t) (cond [(leaf? t) (... (leaf-datum t))] [else (... (tree-fn (node-lson t)) (tree-fn (node-rson t)))])) Self-reference in the data definition leads to self-reference in the template; Self-reference in the template leads to self-reference in the code.

The template questions What’s the answer for a leaf? tree-fn : Tree -> ??? (define (tree-fn t) (cond [(leaf? t) (... (leaf-datum t))] [else (... (tree-fn (node-lson t)) (tree-fn (node-rson t) ))])) If you knew the answers for the 2 sons, how could you find the answer for the whole tree? And here are the template questions. When we write a function using the template, we fill in the template with the answers to these questions.

The template recipe doesn't need to change Question Answer Does the data definition distinguish among different subclasses of data? Your template needs as many cond clauses as subclasses that the data definition distinguishes. How do the subclasses differ from each other? Use the differences to formulate a condition per clause. Do any of the clauses deal with structured values? If so, add appropriate selector expressions to the clause. Does the data definition use self-references? Formulate ``natural recursions'' for the template to represent the self-references of the data definition. Do any of the fields contain compound or mixed data? If the value of a field is a foo, add a call to a foo-fn to use it. The template recipe doesn't need to change

What’s the answer for a leaf? leaf-sum Next we'll do some examples of functions on binary trees. What’s the answer for a leaf? leaf-sum : Tree -> Number (define (leaf-sum t) (cond [(leaf? t) (leaf-datum t)] [else (+ (leaf-sum (node-lson t)) (leaf-sum (node-rson t)))])) If you knew the answers for the 2 sons, how could you find the answer for the whole tree? Next we'll do some examples of functions on binary trees.

Halting Measure for trees t1 has fewer nodes than (make-node t1 t2) Similarly, t2 has fewer nodes than (make-node t1 t2) . So the number of nodes is a halting measure for any function that follows the template You can easily adapt this to any tree-like data definition.

What’s the answer for a leaf? leaf-max What’s the answer for a leaf? leaf-max : Tree -> Number (define (leaf-max t) (cond [(leaf? t) (leaf-datum t)] [else (max (leaf-max (node-lson t)) (leaf-max (node-rson t)))])) If you knew the answers for the 2 sons, how could you find the answer for the whole tree? We just fill in the answer to each question.

What’s the answer for a leaf? leaf-min What’s the answer for a leaf? leaf-min : Tree -> Number (define (leaf-min t) (cond [(leaf? t) (leaf-datum t)] [else (min (leaf-min (node-lson t)) (leaf-min (node-rson t)))])) If you knew the answers for the 2 sons, how could you find the answer for the whole tree? And leaf-min is similar.

Summary You should now be able to: Write a data definition for tree-structured information Write a template for tree-structured information Write functions that manipulate that data, using the template

Next Steps Study the file 06-2-trees.rkt in the Examples folder. If you have questions about this lesson, ask them on the Discussion Board Do Guided Practice 6.2 Go on to the next lesson