Introduction to Materials Science and Engineering

Slides:



Advertisements
Similar presentations
Microstructures in Eutectic Systems: I
Advertisements

Phase Equilibria: Solubility Limit Sucrose/Water Phase Diagram Pure Sugar Temperature (°C) Co=Composition (wt% sugar) L (liquid solution.
Chapter 9: Phase Diagrams
Phase Diagrams Phase: A homogeneous portion of a system that have uniform physical and chemical characteristics. Single phase Two phases For example at.
Introduction to Materials Science, Chapter 9, Phase Diagrams University of Virginia, Dept. of Materials Science and Engineering 1 Development of microstructure.
Phase Diagrams Chapter 10.
PHASE DIAGRAMS Phase B Phase A • When we combine two elements...
Chapter Outline: Phase Diagrams
ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt%Cu - wt%Ni),
How to calculate the total amount of  phase (both eutectic and primary)? Fraction of  phase determined by application of the lever rule across the entire.
Chapter 9 Phase Diagrams.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter 9: Phase Diagrams
ENGR-45_Lec-22_PhaseDia-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Licensed Electrical &
1. Chapter 09: Phase Diagram 2 Introduction Phase Diagrams are road maps.
ENGR-45_Lec-21_PhasrDia-1.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
1 ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g., wt% Cu.
Ex: Phase Diagram: Water-Sugar System THE SOLUBILITY LIMIT.
Microstructure and Phase Transformations in Multicomponent Systems
Chapter ISSUES TO ADDRESS... When we mix two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
ME 210 Exam 2 Review Session Dr. Aaron L. Adams, Assistant Professor.
CHAPTER 10: PHASE DIAGRAMS
The Structure and Dynamics of Solids
CHAPTER 9: PHASE DIAGRAMS
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron 1.
Fe-Carbon Phase Diagram
Phase Diagram Fe3C.
ME 330 Engineering Materials
Chapter ISSUES TO ADDRESS... When we combine two elements... what is the resulting equilibrium state? In particular, if we specify the composition.
Phase Equilibrium Engr 2110 – Chapter 9 Dr. R. R. Lindeke.
Chapter ISSUES TO ADDRESS... When we combine two elements... what equilibrium state do we get? In particular, if we specify... --a composition (e.g.,
Chapter ISSUES TO ADDRESS... When we combine two __________... what is the resulting _____________state? In particular, if we specify the.
Solid State Reactions Phase Diagrams and Mixing
Metallic Materials-Phase Diagrams
Part 6 Chemistry Engineering Department 23/10/2013
PHASE DIAGRAMS ISSUES TO ADDRESS... • When we combine two elements...
Materials Engineering
The Iron–Iron Carbide (Fe–Fe3C) Phase Diagram
Phase Diagrams–Equilibrium Microstructural Development
Chapter 9: Phase Diagrams
EX 1: Pb-Sn Eutectic System
Chapter 9: Phase Diagrams
Chapter 11: Phase Diagrams
Visit for more Learning Resources
CHAPTER 9: Definitions A. Solid Solution
IRON-CARBON (Fe-C) PHASE DIAGRAM
Phase Diagrams.
AHMEDABAD INSTITUTE OF TECHNOLOGY
Phase Diagrams Binary Eutectoid Systems Iron-Iron-Carbide Phase Diagram Steels and Cast Iron Weeks
Fully Miscible Solution
HYPOEUTECTIC & HYPEREUTECTIC
CHAPTER 9: PHASE DIAGRAMS
EX: Pb-Sn EUTECTIC SYSTEM (1)
Phase Diagrams.
Chapter 10: Phase Diagrams
Cast Iron Ferrous alloys with > 2.1 wt% C
2/16/2019 9:54 PM Chapter 9 Phase Diagrams Dr. Mohammad Abuhaiba, PE.
Single solid phase binary alloy -1
EX: Pb-Sn EUTECTIC SYSTEM (1)
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
CHAPTER 8 Phase Diagrams 1.
Working with Phase Diagrams
Eutectic Type Phase Diagrams
HYPOEUTECTIC & HYPEREUTECTIC
Chapter 10: Phase Diagrams
IE-114 Materials Science and General Chemistry Lecture-10
Phase Diagram.
CHAPTER 9: PHASE DIAGRAMS
Presentation transcript:

Introduction to Materials Science and Engineering Chapter 9: Phase Diagrams Textbook Chapter 11: Phase Diagrams

Content Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy

Introduction ISSUES TO ADDRESS... • When we combine two elements... what equilibrium state do we get? • In particular, if we specify... --a composition (e.g., wt%Cu – wt%Ni), and --a temperature (T) then... How many phases do we get? What is the composition of each phase? How much of each phase do we get?

Introduction ISSUES TO ADDRESS... Phase diagram is a graphical illustration of a thermodynamic equilibrium state of a material system which is defined by the composition, temperature, and pressure, namely, Gibbs free energy of a system, and illustrates, The number of phases at equilibrium The composition of each phases The amount of each phases at equilibrium.

Content Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy

THE SOLUBILITY LIMIT • Solubility Limit: + L S • Ex: Phase Diagram: Max. concentration for which only a solution occurs. Pure Sugar Temperature (ºC) 20 4 6 8 10 C o = Composition (wt% sugar) L (liquid solution i.e., syrup) Solubility Limit (liquid) + S (solid sugar) 65 Water • Ex: Phase Diagram: Water-Sugar System Question: What is the solubility limit at 20C? Answer: 65wt% sugar. If Co < 65wt% sugar: sugar  syrup If Co > 65wt% sugar: syrup + sugar. Adapted from Fig. 9.1, Callister 6e. • Solubility limit increases with T: e.g., if T = 100C, solubility limit = 80wt% sugar.

COMPONENTS AND PHASES • Components: • Phases: The elements or compounds which are mixed initially (e.g., Al and Cu) • Phases: The physically and chemically identical material regions that result (e.g., a and b). Aluminum- Copper Alloy Adapted from Fig. 9.0, Callister 3e.

EFFECT OF T & COMPOSITION (Co) • Changing T can change # of phases: path A to B. • Changing Co can change # of phases: path B to D. 70 8 10 6 4 2 Temperature (ºC) C o =Composition (wt% sugar) L ( liquid solution i.e., syrup) A (20,70 ) 2 phases B (100,70) 1 phase 20 D (100,90) (liquid) + S (solid sugar) • water- sugar system Adapted from Fig. 9.1, Callister 6e.

Content Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy

PHASE DIAGRAMS • Tell us about phases as function of T, Co, P. Gibbs Phase Rule: • Tell us about phases as function of T, Co, P. • For this course: --binary systems: just 2 components. --independent variables: T and Co (P = 1 atm is always used). P+F=C+2 2 phases: L (liquid) a (FCC solid solution) 3 phase fields: L + wt% Ni 20 4 6 8 10 100 110 120 130 140 150 160 T(C) L (liquid) (FCC solid solution) + liquidus solidus • Phase Diagram for Cu-Ni system Adapted from Fig. 9.2(a), Callister 6e. (Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH (1991).

PHASE DIAGRAMS: # and types of phases • Rule 1: If we know T and Co, then we know: --the # and types of phases present. wt% Ni 20 4 6 8 10 100 110 120 130 140 150 160 T(ºC) L (liquid) a (FCC solid solution) L + liquidus solidus A(1100,60) B (1250,35) • Examples: Cu-Ni phase diagram Adapted from Fig. 9.2(a), Callister 6e. (Fig. 9.2(a) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991).

PHASE DIAGRAMS: composition of phases • Rule 2: If we know T and Co, then we know: --the composition of each phase. Cu-Ni system • Examples: wt% Ni 20 120 130 T(ºC) L (liquid) a (solid) L + liquidus solidus 3 4 5 T A D B tie line 35 32 C o C o = 35wt%Ni At T A : ? Only Liquid (L) C L = C o ( = 35wt% Ni) At T D : ? Only Solid ( a ) C a = C o ( = 35wt% Ni ) At T B : ? Both a and L Adapted from Fig. 9.2(b), Callister 6e. (Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.) C L = C liquidus ( = 32wt% Ni here) C a = C solidus ( = 43wt% Ni here)

PHASE DIAGRAMS: weight fractions of phases • Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). Cu-Ni system • Examples: T(ºC) C o = 38wt%Ni A T A At T tie line A : Only Liquid (L) L (liquid) 130 W L = 100wt%, W a = 0 a B + L At T a D : Only Solid ( ) T B R S W L = 0, W a = 100wt% a + a L At T : Both a B and L 120 D T (solid) D What would be WL and W? 20 3 32 38 4 4 4 5 W L = S R + C L C C o a wt% Ni W a = R + S

PHASE DIAGRAMS: weight fractions of phases Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). • Cu-Ni system • Examples: T(ºC) A T A tie line L (liquid) 130 a B + L T B R S a + a L 120 D T (solid) D What would be WL and W? 20 3 32 35 4 4 4 5 W L = S R + C L C C o a wt% Ni W a = R + S

PHASE DIAGRAMS: weight fractions of phases • Rule 3: If we know T and Co, then we know: --the amount of each phase (given in wt%). • Examples: Cu-Ni system wt% Ni 20 120 130 T(ºC) L (liquid) a (solid) L + liquidus solidus 3 4 5 T A D B tie line 35 32 C o R S What would be WL and W? W L = S R + = 27wt% W a = R + S Adapted from Fig. 9.2(b), Callister 6e. (Fig. 9.2(b) is adapted from Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, OH, 1991.)

THE LEVER RULE: A PROOF • Sum of weight fractions: • Conservation of mass (Ni): • Combine above equations: • A geometric interpretation:

Content Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy

EX: COOLING IN A Cu-Ni BINARY • Phase diagram: Cu-Ni system. T(ºC) L (liquid) L: 35wt%Ni Cu-Ni system • System is: --binary i.e., 2 components: Cu and Ni. --isomorphous i.e., complete solubility of one component in another; a phase field extends from 0 to 100wt% Ni. 130 a A + L: 35wt%Ni L a : 46wt%Ni B 35 46 C 32 43 D 24 L: 32wt%Ni 36 a a + : 43wt%Ni 120 L E L: 24wt%Ni a a : 36wt%Ni (solid) • Consider Co = 35wt%Ni. What would be the microstructure? 110 20 3 35 4 5 C wt% Ni o

EX: COOLING IN A Cu-Ni BINARY wt% Ni 20 120 130 3 4 5 110 L (liquid) a (solid) L + T(ºC) A D B 35 C o L: 35wt%Ni : 46wt%Ni E 46 43 32 24 36 43wt%Ni L: 32wt%Ni L: 24wt%Ni 36wt%Ni Cu-Ni system • Consider Co = 35wt%Ni. Adapted from Fig. 9.3, Callister 6e.

If the alloy (65%Cu-35%Ni) is cooled from A to D at 10oC/sec, what would be the details inside the solid? wt% Ni 20 120 130 T(ºC) L (liquid) a (solid) L + liquidus solidus 3 4 5 T A D B tie line 35 32 C o

CORED VS EQUILIBRIUM PHASES • Ca changes as we solidify. • Cu-Ni case: First a to solidify has Ca = 46wt%Ni. Last a to solidify has Ca = 35wt%Ni. • Fast rate of cooling: Cored structure • Slow rate of cooling: Equilibrium structure

MECHANICAL PROPERTIES: Cu-Ni System • Effect of solid solution strengthening on: --Tensile strength (TS) --Ductility (%EL,%AR) Elongation (%EL) Composition, wt%Ni Cu Ni 20 4 6 8 10 3 5 %EL for pure Ni for pure Cu Tensile Strength (MPa) 200 00 TS for TS for pure Cu ?

MECHANICAL PROPERTIES: Cu-Ni System • Effect of solid solution strengthening on: --Tensile strength (TS) --Ductility (%EL,%AR) --Peak as a function of Co --Min. as a function of Co

Content Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy

BINARY-EUTECTIC SYSTEMS Ex.: Cu-Ag system Gibbs Phase Rule: P+F=C+2 3 single phase regions (L, a, b) Limited solubility: L (liquid) a L + b C o , wt% Ag 20 4 6 8 10 2 120 T(ºC) 00 E T 8.0 71 .9 91.2 779ºC a : mostly Cu b : mostly Ag TE: no liquid below TE CE: minimum melting Temp. composition

EX: Pb-Sn EUTECTIC SYSTEM (1) • For a 40wt%Sn-60wt%Pb alloy at 150C, find... --the phases present: a + b --the compositions of the phases: T(ºC) 3 00 L (liquid) L + a a L + b b 2 183ºC 18.3 61.9 97.8 150 a + b 1 00 20 4 6 8 10 C o C , wt% Sn o

EX: Pb-Sn EUTECTIC SYSTEM (2) • For a 40wt%Sn-60wt%Pb alloy at 150C, find... --the phases present: a + b --the compositions of the phases: Ca = ? Cb = ? --the relative amounts of each phase: T(ºC) 3 00 L (liquid) L + a a L + b b 2 183ºC 18.3 61.9 97.8 150 R S 1 00 Wa = ? wt% Wb = ? wt% a + b 11 20 4 6 8 99 10 C o C , wt% Sn o

EX: Pb-Sn EUTECTIC SYSTEM (2) • For a 40wt%Sn-60wt%Pb alloy at 150C, find... --the phases present: a + b --the compositions of the phases: Ca = 11wt%Sn Cb = 99wt%Sn --the relative amounts of each phase: T(ºC) 3 00 L (liquid) L + a a L + b b 2 183ºC 18.3 61.9 97.8 150 R S 1 00 a + b 11 20 4 6 8 99 10 C o C , wt% Sn o

MICROSTRUCTURES IN EUTECTIC SYSTEMS-I • Co < 2wt%Sn • Result: ? T(ºC) L: C o wt%Sn 4 00 L 3 00 L + a a 2 (Pb-Sn T E System) 1 00 a + b 1 2 3 C o C o , wt% Sn 2 (room T solubility limit)

MICROSTRUCTURES IN EUTECTIC SYSTEMS-I • Co < 2wt%Sn • Result: --polycrystal of a grains. L + a 2 T(ºC) C o , wt% Sn 1 3 00 L: C wt%Sn : C b 4 (room T solubility limit) T E

MICROSTRUCTURES IN EUTECTIC SYSTEMS-II • 2wt%Sn < Co < 18.3wt%Sn • Result:? T(ºC) L: C o wt%Sn 4 00 L L 3 00 a L + a a : C o wt%Sn a 2 T E a b 1 00 a + b Pb-Sn system 1 2 3 C C o , wt% Sn 2 o (sol. limit at T room ) 18.3 (sol. limit at T E )

MICROSTRUCTURES IN EUTECTIC SYSTEMS-II • 2wt%Sn < Co < 18.3wt%Sn • Result: --a polycrystal with fine b crystals. a : C o wt%Sn L + 2 T(ºC) , wt% Sn 1 18.3 3 00 L: C b 4 T E ) Pb-Sn system (sol. limit at T room (sol. limit at T E )

MICROSTRUCTURES IN EUTECTIC SYSTEMS-III • Co = CE • Result: ? L + a 2 T(ºC) C o , wt% Sn 4 3 00 1 6 L: C wt%Sn b T E : 18.3wt%Sn 8 100 18.3 97.8 61.9 183ºC : 97.8wt%Sn Pb-Sn system

MICROSTRUCTURES IN EUTECTIC SYSTEMS-III • Co = CE • Result: Eutectic microstructure --alternating layers of a and b crystals. T(ºC) L: C o wt%Sn 3 00 L Pb-Sn system L + a L + b 2 a b 183ºC T E 1 00 a + b b : 97.8wt%Sn a : 18.3wt%Sn 2 4 6 8 100 18.3 C 97.8 E C o , wt% Sn 61.9

Formation of Eutectic Lamellar Structure

MICROSTRUCTURES IN EUTECTIC SYSTEMS-IV • 18.3wt%Sn < Co < 61.9wt%Sn • Result: a crystals and an eutectic microstructure Just above TE: L + a 2 T(ºC) C o , wt% Sn 4 3 00 1 6 L: C wt%Sn b T E 8 100 18.3 61.9 97.8 S R C a = 18.3wt%Sn C L = 61.9wt%Sn S W a = =50wt% R + S W L = (1- W a ) =50wt% Just below TE: C a = 18.3wt%Sn C b = 97.8wt%Sn S W a = =73wt% R + S W b = 27wt%

MICROSTRUCTURES IN EUTECTIC SYSTEMS-IV • 18.3wt%Sn < Co < 61.9wt%Sn • Result: a crystals and an eutectic microstructure Just above TE : W L = (1- a ) =50wt% C = 18.3wt%Sn = 61.9wt%Sn S R + = L: C wt%Sn L a o T(ºC) L 3 00 L a L + a b 2 R S L + b a T E R S Just below TE : C a = 18.3wt%Sn b = 97.8wt%Sn S R + W = =73wt% = 27wt% 1 00 a + b primary a eutectic a eutectic b 2 4 6 8 100 18.3 C o 61.9 97.8 C o , wt% Sn

HYPOEUTECTIC & HYPEREUTECTIC T(ºC) 3 00 L L + a 2 a L + b (Pb-Sn T E b System) a + b 1 00 C o C o hypoeutectic hypereutectic C 2 4 6 8 100 o , wt% Sn eutectic 97.8 18.3 175 m a hypoeutectic: C o =50wt%Sn 61.9 hypereutectic: (illustration only) 160 m o =61.9wt%Sn eutectic: C b b b b b b eutectic micro-constituent

OTHER EXAMPLES

OTHER EXAMPLES

Content Introduction Solubility Limit Phase Diagrams Microstructure Evolution during Cooling Eutectic Systems Fe-C Alloy

IRON-CARBON (Fe-C) PHASE DIAGRAM 3 C (cementite) 1600 1400 1200 1000 800 6 00 4 1 2 5 6.7 L g ( austenite) +L +Fe C a + L+Fe d (Fe) o , wt% C 0.77 4.30 727ºC = T eutectoid 1148ºC T(ºC) A B S R Two important points -Eutectic (A): -Eutectoid (B): L + g + Fe 3 C g + a

IRON-CARBON (Fe-C) PHASE DIAGRAM 3 C (cementite) 1600 1400 1200 1000 800 6 00 4 1 2 5 6.7 L g ( austenite) +L +Fe C a + L+Fe d (Fe) o , wt% C 0.77 4.30 727ºC = T eutectoid 1148ºC T(ºC) A B S R C (cementite-hard) ferrite-soft) Two important points -Eutectic (A): -Eutectoid (B): L + g + Fe 3 C g + a Result: Pearlite = alternating layers of a and Fe3C phases. 120 m

Formation of Pearlite Lamellar Structure

HYPOEUTECTOID STEEL Fe 3 C (cementite) L g ( austenite) +L +Fe a L+Fe 1600 1400 1200 1000 800 6 00 4 1 2 5 6.7 L g ( austenite) +L +Fe a L+Fe d , wt% C 0.77 727ºC 1148ºC T(ºC) R S r s

HYPOEUTECTOID STEEL Fe 3 C (cementite) L g ( austenite) +L +Fe a L+Fe 1600 1400 1200 1000 800 6 00 4 1 2 5 6.7 L g ( austenite) +L +Fe a L+Fe d , wt% C 0.77 727ºC 1148ºC T(ºC) R S r s w = /( + ) (1- Fe3C pearlite 100 m

HYPEREUTECTOID STEEL a T(ºC) d L (Fe-C g g +L System) L+Fe C ( 3 1600 d L 1400 (Fe-C g g +L System) 1200 L+Fe C ( 1148ºC 3 austenite) 1000 g +Fe C Adapted from Figs. 9.21 and 9.29,Callister 6e. (Fig. 9.21 adapted from Binary Alloy Phase Diagrams, 2nd ed., Vol. 1, T.B. Massalski (Ed.-in-Chief), ASM International, Materials Park, OH, 1990.) 3 C (cementite) 800 r s a R S 6 00 3 a +Fe 3 C Fe 4 00 1 0.77 C 2 3 4 5 6 6.7 o C o , wt% C

HYPEREUTECTOID STEEL (Fe-C System) Fe 3 C (cementite) L g ( austenite) 1600 1400 1200 1000 800 6 00 4 1 2 5 6.7 L g ( austenite) +L +Fe a L+Fe d , wt% C 0.77 1148ºC T(ºC) R S s w Fe3C = r /( + ) =(1- (1- pearlite m Hypereutectoid steel

SUMMARY • Phase diagrams are useful tools to determine: --the number and types of phases, --the wt% of each phase, --and the composition of each phase for a given T and composition of the system. • Alloying to produce a solid solution usually --increases the tensile strength (TS) --decreases the ductility. • Binary eutectics and binary eutectoids allow for a range of microstructures.