Adavanced Numerical Computation

Slides:



Advertisements
Similar presentations
Independent Component Analysis
Advertisements

0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Machine Learning Week 1, Lecture 2. Recap Supervised Learning Data Set Learning Algorithm Hypothesis h h(x) ≈ f(x) Unknown Target f Hypothesis Set 5 0.
2008 SIAM Conference on Imaging Science July 7, 2008 Jason A. Palmer
Asymptotic error expansion Example 1: Numerical differentiation –Truncation error via Taylor expansion.
Independent Component Analysis & Blind Source Separation
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 30 Numerical Integration & Differentiation.
Neural Computation Prof. Nathan Intrator
Independent Component Analysis & Blind Source Separation Ata Kaban The University of Birmingham.
A gentle introduction to Gaussian distribution. Review Random variable Coin flip experiment X = 0X = 1 X: Random variable.
ECIV 301 Programming & Graphics Numerical Methods for Engineers Lecture 29 Numerical Integration.
Subband-based Independent Component Analysis Y. Qi, P.S. Krishnaprasad, and S.A. Shamma ECE Department University of Maryland, College Park.
Lecture 12 Projection and Least Square Approximation Shang-Hua Teng.
1 lBayesian Estimation (BE) l Bayesian Parameter Estimation: Gaussian Case l Bayesian Parameter Estimation: General Estimation l Problems of Dimensionality.
Continuous Random Variables and Probability Distributions
ICA Alphan Altinok. Outline  PCA  ICA  Foundation  Ambiguities  Algorithms  Examples  Papers.
Linear and Non-Linear ICA-BSS I C A  Independent Component Analysis B S S  Blind Source Separation Carlos G. Puntonet Dept.of Architecture.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM.
Ranga Rodrigo April 5, 2014 Most of the sides are from the Matlab tutorial. 1.
Numerical Integration
1 Numerical Analysis Lecture 12 Numerical Integration Dr. Nader Okasha.
CMPS1371 Introduction to Computing for Engineers NUMERICAL METHODS.
4.6 Numerical Integration Trapezoid and Simpson’s Rules.
CISE-301: Numerical Methods Topic 1: Introduction to Numerical Methods and Taylor Series Lectures 1-4: KFUPM CISE301_Topic1.
WELCOME. Malay Mitra Lecturer in Computer Science & Application Jalpaiguri Polytechnic West Bengal.
COMMON EVALUATION FINAL PROJECT Vira Oleksyuk ECE 8110: Introduction to machine Learning and Pattern Recognition.
Review Taylor Series and Error Analysis Roots of Equations
Empirical Research Methods in Computer Science Lecture 7 November 30, 2005 Noah Smith.
ECE 8443 – Pattern Recognition LECTURE 10: HETEROSCEDASTIC LINEAR DISCRIMINANT ANALYSIS AND INDEPENDENT COMPONENT ANALYSIS Objectives: Generalization of.
Image cryptosystems based on PottsNICA algorithms Meng-Hong Chen Jiann-Ming Wu Department of Applied Mathematics National Donghwa University.
Integration For a function f, The “integral of f from a to b” is the area under the graph of the function. If f is continuous, then the area is well defined,
Quadrature rules 1Michael Sokolov / Numerical Methods for Chemical Engineers / Numerical Quadrature Michael Sokolov ETH Zurich, Institut für Chemie- und.
CS Statistical Machine learning Lecture 24
EE4-62 MLCV Lecture Face Recognition – Subspace/Manifold Learning Tae-Kyun Kim 1 EE4-62 MLCV.
Lecture 09 03/01/2012 Shai Avidan הבהרה: החומר המחייב הוא החומר הנלמד בכיתה ולא זה המופיע / לא מופיע במצגת.
Neural Computation Prof. Nathan Intrator
Intelligent Numerical Computation1 Numerical Analysis MATLAB programming Numerical Methods Applications Contents.
Lecture 2: Statistical learning primer for biologists
Chapter 13 (Prototype Methods and Nearest-Neighbors )
Multi-target Detection in Sensor Networks Xiaoling Wang ECE691, Fall 2003.
ECE 8443 – Pattern Recognition ECE 8527 – Introduction to Machine Learning and Pattern Recognition LECTURE 12: Advanced Discriminant Analysis Objectives:
Use of Newton-Cotes Formulas and eventual shortcomings Matlab code to increase number of segments with trapezoid, 1/3 and 3/8 rule.
Introduction to Independent Component Analysis Math 285 project Fall 2015 Jingmei Lu Xixi Lu 12/10/2015.
An Effective Hybridized Classifier for Breast Cancer Diagnosis DISHANT MITTAL, DEV GAURAV & SANJIBAN SEKHAR ROY VIT University, India.
Intelligent Numerical Computation1 Numerical Analysis Basic structures of a flowchart Solving a nonlinear equation with one variable Bisection method Newton.
For multivariate data of a continuous nature, attention has focussed on the use of multivariate normal components because of their computational convenience.
Dimension reduction (1) Overview PCA Factor Analysis Projection persuit ICA.
By: Soroosh Mariooryad Advisor: Dr.Sameti 1 BSS & ICA Speech Recognition - Spring 2008.
Classification of Breast Cancer Cells Using Artificial Neural Networks and Support Vector Machines Emmanuel Contreras Guzman.
MA2213 Lecture 12 REVIEW. 1.1 on page Compute Compute quadratic Taylor polynomials for 12. Compute where g is the function in problems 11 and 12.
Hybrid Ant Colony Optimization-Support Vector Machine using Weighted Ranking for Feature Selection and Classification.
數值方法 2008, Applied Mathematics NDHU 1 Numerical Integration.
Naïve Bayes Classification Recitation, 1/25/07 Jonathan Huang.
Intelligent Numerical Computation1 MFA for constrained optimization  Mean field annealing  Overviews  Graph bisection problem  Traveling salesman problem.
Air Force Admin College, Coimbatore
LECTURE 11: Advanced Discriminant Analysis
LECTURE 09: BAYESIAN ESTIMATION (Cont.)
Linear Filters and Edges Chapters 7 and 8
Chapter 3: Maximum-Likelihood and Bayesian Parameter Estimation (part 2)
Edge detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the image can be encoded.
Numerical Analysis Lecture 45.
Pattern Recognition and Image Analysis
MATH-321 In One Slide MATH-321 & MATLAB Command.
Independent Factor Analysis
Assignment 1: due 1/16/19 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
Assignment 1: due 1/17/19 Estimate all of the zero of x3-x2-2x+1 graphically. Write a MatLab code for Newton’s method. Use your code to refine the graphical.
CS+Social Good.
Chapter 3: Maximum-Likelihood and Bayesian Parameter Estimation (part 2)
Recapitulation of Lecture 12
Air Force Admin College, Coimbatore
Presentation transcript:

Adavanced Numerical Computation Numerical Analysis MATLAB programming Numerical Methods I Numerical Methods II Marginal density estimation Expectation and maximization(EM) Annealed EM AEM for Clustering analysis Traveling salesman problem Numerical Methods III Independent component analysis Classification Function approximation Density estimation Adavanced Numerical Computation

Adavanced Numerical Computation References Numerical mathematics and computing, fourth Edition, Cheney&Kincaid, 1999 Lecture slides ftp://134.208.26.61 user:ndhu passwd:ndhu port:4810 G. Rechtenwald, Numerical methods with MATLAB: Implementation and application. Adavanced Numerical Computation

Adavanced Numerical Computation Numerical Methods I Numerical interpolation and approximation Numerical integration and differentiation Linear system and least square method Approximation by spline functions Adavanced Numerical Computation

Adavanced Numerical Computation Interpolation Adavanced Numerical Computation

Adavanced Numerical Computation Function approximation Adavanced Numerical Computation

Adavanced Numerical Computation Function approximation Adavanced Numerical Computation

Adavanced Numerical Computation Initial Value Problem for ODEs Adavanced Numerical Computation

Adavanced Numerical Computation Numerical integration Lower sum and upper sum Trapezoid rule Simpson rule Adavanced Numerical Computation

Adavanced Numerical Computation Linear system Ax=b Given A and b, find x Ex. Adavanced Numerical Computation

Adavanced Numerical Computation Approximation by spline functions Quadratic spline Cubic spline Natural cubic spline B-splines Adavanced Numerical Computation

Adavanced Numerical Computation Smoothing and the least square method Adavanced Numerical Computation

Adavanced Numerical Computation Numerical methods II Expectation and maximization(EM) Marginal density estimation Annealed EM Marginal density estimation(AEM) AEM for Clustering analysis Traveling salesman problem Adavanced Numerical Computation

Adavanced Numerical Computation A generative model for Gaussian mixtures . . . Generator Multiplexer Adavanced Numerical Computation

Adavanced Numerical Computation Marginal Density Estimation Adavanced Numerical Computation

Adavanced Numerical Computation Clustering analysis Adavanced Numerical Computation

Adavanced Numerical Computation Clustering analysis Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation- Gaussian Mixtures … Flip Coin … … … 2 M p Adavanced Numerical Computation

Adavanced Numerical Computation Generative models of natural images Adavanced Numerical Computation Figure 5

Adavanced Numerical Computation Generative models of natural images Adavanced Numerical Computation

Adavanced Numerical Computation Traveling salesman problems Adavanced Numerical Computation

Adavanced Numerical Computation Numerical Methods III Independent component analysis Linear ICA Convolutive ICA Classification Data driven function approximation Multivariate density estimation Adavanced Numerical Computation

Adavanced Numerical Computation Independent component analysis Adavanced Numerical Computation

Adavanced Numerical Computation Independent component analysis Observations Adavanced Numerical Computation

Adavanced Numerical Computation Independent component analysis Recovered sources Adavanced Numerical Computation

Adavanced Numerical Computation Blind source separation – fetal ECG BSS Adavanced Numerical Computation

Adavanced Numerical Computation sources mixed images AemICA JadeICA Adavanced Numerical Computation

Adavanced Numerical Computation Fz Cz Pz Oz C3 F4 F3 P2 P3 Adavanced Numerical Computation

Adavanced Numerical Computation Fz Cz Pz Oz C3 F4 F3 P2 N1 N2 P3 Figure 12 Adavanced Numerical Computation

Adavanced Numerical Computation Blind source separation by convolutive ICA music and speech Adavanced Numerical Computation

Adavanced Numerical Computation Convolutive mixtures Adavanced Numerical Computation

Adavanced Numerical Computation Recovered sources Adavanced Numerical Computation

Adavanced Numerical Computation

Adavanced Numerical Computation

Adavanced Numerical Computation

Adavanced Numerical Computation Numerical methods III Independent component analysis Classification Function approximation Multivariate density estimation Adavanced Numerical Computation

Adavanced Numerical Computation Classification- Face detection Adavanced Numerical Computation

Adavanced Numerical Computation Classification- Face detection Adavanced Numerical Computation

Adavanced Numerical Computation Classification- Face detection Adavanced Numerical Computation

Adavanced Numerical Computation Classification- Face recognition Adavanced Numerical Computation

Adavanced Numerical Computation Classification – breast cancer diagnosis Breast Cancer Diagnosis FNA細胞樣本 Features: clump thickness uniformity of cell size uniformity of cell shape marginal adhesion single epithelial cell size bare nuclei bland chromatin normal nucleoli and mitoses A camera on a Microscope Benign Or Malignant Feature extractor Adavanced Numerical Computation

Adavanced Numerical Computation Function Approximation a. Adavanced Numerical Computation

Adavanced Numerical Computation Function Approximation b. Adavanced Numerical Computation

Adavanced Numerical Computation Function Approximation Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation a b c d Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation a b c d Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation a b c d Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation a b Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation Adavanced Numerical Computation

Adavanced Numerical Computation Density estimation Adavanced Numerical Computation

Adavanced Numerical Computation MATLAB Programming Input your data, including texts, images, and sounds Output: 2D plots & output messages Basic control: if, for, while statements Matrix manipulations Function calling Speeding-up of programs Adavanced Numerical Computation

Adavanced Numerical Computation Basic structure of a flowchart or a program One by one sequential execution A statement can be an assignment: A = B*C-D : x = sort(x) a function for I/O : plot(x,y) : imread(X) a control statement -- if statement -- if else statement -- for statement -- while statement start statements end Adavanced Numerical Computation

Adavanced Numerical Computation Control statements If statement false condition tag = 0; if ~ tag tag = tag+1; end true statements Adavanced Numerical Computation

Adavanced Numerical Computation Control statements If else statement false or 0 condition if ~ tag tag = tag +1; else tag = tag –1; end true or 1 statements statements Adavanced Numerical Computation

Adavanced Numerical Computation Control statements for statement i =1 Example x=2; for i = 1:10 x = x*x; end false true statements i=i+1 Adavanced Numerical Computation

Adavanced Numerical Computation Control statements while statement Example a=1; b=2; while a < 100 a = a*b; end false a<100 true statements Adavanced Numerical Computation