Key output and findings D.K. & B.L.

Slides:



Advertisements
Similar presentations
MathCAD Data.
Advertisements

In this example I will all of the IT majors. I start by clicking the Contact Info for Majors by GPA and Hours button of the shared reports form.
Algorithms Today we will look at: what we mean by efficiency in programs why efficiency matters what causes programs to be inefficient? will one algorithm.
Jonathan Simon Elizabeth Langdon COM 633, Fall 2010.
Alicia Romano and Colleen Orihill LIWC: Linguistic Inquiry and Word Count Designed by James W. Pennebaker, Roger J. Booth, and Martha E. Francis.
Introduction to SPSS Allen Risley Academic Technology Services, CSUSM
Diction 5.0 Created by Roderick P. Hart Kimberly S. Cooper and Paul M. Palisin.
VBPro & Yoshikoder C.K. & D.L.. VBPro About VBPro Must make own dictionary in this format Can import LIWC and other dictionaries, but wildcards (*) crash.
Visualizing Multiple Physician Office Locations Exercise 9 GIS in Planning and Public Health Wansoo Im, Ph.D.
Chapter 7 Data Management. Agenda Database concept Import data Input and edit data Sort data Function Filter data Create range name Calculate subtotal.
Spatial Analysis Using Content Analysis Data. Space as a Social Dimension  Where do things happen?  What is the spatial distribution of the data? 
Classification of Music According to Genres Using Neural Networks, Genetic Algorithms and Fuzzy Systems.
Pattern Matching COMP171 Spring Pattern Matching / Slide 2 Pattern Matching * Given a text string T[0..n-1] and a pattern P[0..m-1], find all occurrences.
Pet Fish and High Cholesterol in the WHI OS: An Analysis Example Joe Larson 5 / 6 / 09.
Database Design IST 7-10 Presented by Miss Egan and Miss Richards.
Differentiating Instruction Using Lexile Measures and OSLIS Developing Targets for Student Success Module I.
M ULTIFRAME P OINT C ORRESPONDENCE By Naseem Mahajna & Muhammad Zoabi.
Introduction to SPSS Edward A. Greenberg, PhD
LIWC Linguistic Inquiry & Word Count Jeff Spicer & Matthew Egizii.
18b. PROC SURVEY Procedures in SAS ®. 1 Prerequisites Recommended modules to complete before viewing this module  1. Introduction to the NLTS2 Training.
Community Architectures for Network Information Systems
Excel. Spreadsheet Software  What Is a Spreadsheet, and How Does It Work? A spreadsheet program allows users to perform simple and complex sorting. It.
Organizing a project, making a table Biostatistics 212 Lecture 7.
Organizing a project, making a table Biostatistics 212 Session 5.
WordStat & Yoshikoder T.M. & M.S.. WordStat About WordStat Must be run as part of SimStat Designed to process text such as open ended responses, journal.
Social Science Research Design and Statistics, 2/e Alfred P. Rovai, Jason D. Baker, and Michael K. Ponton Splitting Files PowerPoint Prepared by Alfred.
Homework #5 New York University Computer Science Department Data Structures Fall 2008 Eugene Weinstein.
Data preparation for use in SEM Ned Kock. Data in table format Each column corresponds to a manifest variable. Some groups of columns correspond to a.
PCAD & CATPAC 2011 Brittani Wolanin & Mike Kurtz.
11/25/2015Slide 1 Scripts are short programs that repeat sequences of SPSS commands. SPSS includes a computer language called Sax Basic for the creation.
CATPAC & MCCALite N.H. & S.S.. CATPAC Can be used on any text, one text at a time Can be used on any text, one text at a time Save as “text only” document.
Music Genre Classification Alex Stabile. Example File
Lesson 6 Formatting Cells and Ranges. Objectives:  Insert and delete cells  Manually format cell contents  Copy cell formatting with the Format Painter.
+ CATPAC & WordStat Anne D. Sito & Erin Sonenstein COM 633: FA 09.
LIWC2001 Diane Fitzpatrick Jennelle Franz. LIWC20012 LIWC2001 Linguistic Inquiry and Word Count Built-in dictionary (but can input own) Built-in dictionary.
Critical Thinking Thinking and Planning Tool (Save this file to your desktop before use) Use the tools on the next slides to create your own Mind Maps.
I Choose To See The Love In Me I choose to see the love in me uh huh, uh huh. I choose to see the love in me, It's also called divinity uh huh, uh huh,
1 januari 2008 RIBASIM input data by Wil N.M. van der Krogt.
Instance Discovery and Schema Matching With Applications to Biological Deep Web Data Integration Tantan Liu, Fan Wang, Gagan Agrawal {liut, wangfa,
Tips: 1. To insert your picture, click “Insert” –> “Picture”, select picture from your computer. (or just click the icon in the middle of page.) You can.
Using Indents and Tabs In this lesson, you will learn how to use the tab selector and the horizontal ruler to set tabs and indents, as well as how to use.
Statistical Exploratory Analysis with “EnQuireR” 1.Introduction 2.Installation 3.How to 4.Report.
Spreadsheet Engineering
The Simple Corpus Tool Martin Weisser Research Center for Linguistics & Applied Linguistics Guangdong University of Foreign Studies
Security in Outsourcing of Association Rule Mining
Chapter 5: Enhancing Your Output with ODS
Metrics Replication Presentation for Maryland Staff September 26, 2002
Data Mining, Neural Network and Genetic Programming
By Dr. Madhukar H. Dalvi Nagindas Khandwala college
Computer Fundamentals
Excel Formulas & Functions.
INTRODUCTION TO UNIX: The Shell Command Interface
Using PowerPoint to Present Research Results
Creating and Editing a Worksheet
Excel 2013 Formulas & Functions.
Space-for-time tradeoffs
Hadoop Basics.
Excel 2013 Formulas & Functions.
Encryption and Decryption
Space-for-time tradeoffs
Excel 2013 Formulas & Functions.
How to use Refworks to Cite a reference and to Create the Bibliography
IBM SCPM PIT Data Download/Upload
Space-for-time tradeoffs
Spreadsheets, Modelling & Databases
Mail Merge.
1 Word Processing Part I.
Space-for-time tradeoffs
Lesson 13 Working with Tables
Presentation transcript:

Key output and findings D.K. & B.L. CATPAC & LIWC Key output and findings D.K. & B.L.

How CATPAC is Used Reads text to identify most important words Can determine patterns of similarity Produces simple frequency counts The neural network is self-organizing Finds patterns of usage between words Uses clustering algorithms Produces perceptual maps

CATPAC frequencies TOTAL WORDS 300 THRESHOLD 0.000 TOTAL UNIQUE WORDS 25 RESTORING FORCE 0.100 TOTAL EPISODES 294 CYCLES 1 TOTAL LINES 60 FUNCTION Sigmoid (-1 - +1) CLAMPING Yes DESCENDING FREQUENCY LIST ALPHABETICALLY SORTED LIST CASE CASE CASE CASE WORD FREQ PCNT FREQ PCNT WORD FREQ PCNT FREQ PCNT --------------- ---- ---- ---- ---- --------------- ---- ---- ---- ---- I 47 15.7 201 68.4 A 28 9.3 153 52.0 A 28 9.3 153 52.0 ABOUT 6 2.0 42 14.3 MY 19 6.3 89 30.3 ALL 6 2.0 39 13.3 I'M 16 5.3 76 25.9 AM 14 4.7 86 29.3 FOR 15 5.0 85 28.9 BE 13 4.3 75 25.5 AM 14 4.7 86 29.3 CAN 6 2.0 39 13.3 BE 13 4.3 75 25.5 FOR 15 5.0 85 28.9 YOU 13 4.3 63 21.4 HAVE 9 3.0 54 18.4 OUT 12 4.0 73 24.8 I 47 15.7 201 68.4 KNOW 10 3.3 62 21.1 I'M 16 5.3 76 25.9 HAVE 9 3.0 54 18.4 KNOW 10 3.3 62 21.1 ME 9 3.0 51 17.3 LIFE 8 2.7 51 17.3 ON 9 3.0 62 21.1 LOVE 8 2.7 46 15.6 SOMEONE 9 3.0 59 20.1 ME 9 3.0 51 17.3 WITH 9 3.0 58 19.7 MY 19 6.3 89 30.3 LIFE 8 2.7 51 17.3 NO 6 2.0 41 13.9 LOVE 8 2.7 46 15.6 NOT 8 2.7 45 15.3 NOT 8 2.7 45 15.3 ON 9 3.0 62 21.1 SHOULD 7 2.3 42 14.3 OUT 12 4.0 73 24.8 SO 7 2.3 49 16.7 SHOULD 7 2.3 42 14.3 ABOUT 6 2.0 42 14.3 SO 7 2.3 49 16.7 ALL 6 2.0 39 13.3 SOMEONE 9 3.0 59 20.1 CAN 6 2.0 39 13.3 WHAT 6 2.0 39 13.3 NO 6 2.0 41 13.9 WITH 9 3.0 58 19.7 WHAT 6 2.0 39 13.3 YOU 13 4.3 63 21.4 CATPAC frequencies

Dendogram output WARDS METHOD A M H Y I N I A O S S W A N K W A M C L B S F L O . Y A O ' O . B U O O I L O N H M E A O E H O I N . . V U M T . O T . M T L . O A . . N V . O R F . . . E . . . . U . . E H . . W T . . . E . U . E . . . . . . . . T . . O . . . . . . . . . . L . . . . . . . . . . . . . N . . . . . . . . . . D . . . . . . . . . . . . . E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ^^^ . . . . . . . . . . . . . . . . . . . . . . . ^^^^^ . . . . . . . . . . . . . . . . . . . . . . ^^^^^^^ . . . . . . . . . . . . . . . . . . . . . ^^^^^^^^^ . . . . . . . . . . . . . . . . . . . . ^^^^^^^^^^^ . . . . . . . . . . . . . . . . . . . ^^^^^^^^^^^^^ . . . . . . . . . . . . . . . . . . ^^^^^^^^^^^^^ . . . . . . . . . . . . . ^^^ . . . ^^^^^^^^^^^^^ . . . . . . . . . . . . . ^^^ . ^^^ ^^^^^^^^^^^^^ . . . . . . . . . ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ . . . . . . . ^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ . . . . . ^^^ ^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ . . ^^^ . ^^^ ^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ . . ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^ . . . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^ . ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^ ^^^^^ ^^^^^^^^^^^^^ ^^^^^ ^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^ ^^^ ^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^ ^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^ ^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Dendogram output

CATPAC 3-D Perceptual Map

Operating Issues with CATPAC Exclude dictionary: must amend the default and save or create in correct format Text input: separating multiple texts requires insertion of a slide barrier Refining the exclude list and analysis settings can be a long, incremental process The 3-D visualizing is cluttered for larger numbers of terms

Linguistic Inquiry and Word Count Provide an effective method for studying emotional/cognitive/structural/process components present in individuals’ verbal and written speech Calculates % of words that match of up to 84 dimensions Generates an output that is readable by SPSS or Excel

LIWC / output variables Text files, once formatted for entry, are processed for up to 84 output variables, including: 17 standard linguistic dimensions (e.g., word count, percentage of pronouns, articles) 25 word categories tapping psychological constructs (e.g., affect, cognition) 10 dimensions related to "relativity" (time, space, motion) 19 personal concern categories (e.g., work, home, leisure activities)

LIWC / How to… For best results -> prepare text for analysis (adjust misspellings, inappropriate words, abbreviations) Adjusting words can be tricky… e.g.: US -> U.S. Sometimes used to analyze oral conversations/interviews -> transcribe speech to text -> dictionary includes some “nonfluencies” (e.g.: hm, uh, huh, um) Analyzes data one file at a time Files: TEXT or ASCII format! Can’t read word document The longer the document, the better

LIWC / dictionaries Only counts words that are in the dictionaries default dictionary: Internal Pennebaker Dictionary -> 2300 words But you can develop your own dictionary! To create dictionary: choose “load new dictionary” from the “dictionary” menu Dictionaries have to be plain text files

LIWC output with standard linguistic dimensions