Question 3 The proponents should show more details about the modification of the detector system to be built in P42 Answers 3-1. Liquid-Hydrogen Target.

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

Cosmic Ray Test of GEM- MPI/TPC in Magnetic Field Hiroshima University Kuroiwa CDC Group Mar
Time Projection Chamber
Ties Behnke, LP, EUDET, Germany etc: Status Report. 1 The LP-TPC Fieldcage Project Goal: design, develop and build a field cage for a “Large Prototype”
Field Cage Simulation Study for Prototype Cherenkov TPC Michael Phipps, Bob Azmoun, and Craig Woody.
E/π identification and position resolution of high granularity single sided TRD prototype M. Târzilă, V. Aprodu, D. Bartoş, A. Bercuci, V. Cătănescu, F.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
E-field calculations for the TPC/HBD N. Smirnov Upgrade Working Group Meeting 05/13/03, BNL.
Pair Spectrometer Design Optimization Pair Spectrometer Design Optimization A. Somov, Jefferson Lab GlueX Collaboration Meeting September
Detector R&D: J-PARC-E16 K. Ozawa (Univ. of Tokyo) for the E16 collaboration.
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
GlueX Simulations Status Report on CD3 geometry Richard Jones GlueX Collaboration Meeting, Newport News, January 10-12, 2008.
D. Peterson, “Tracking Detector R&D at Cornell University and Purdue University” ALCPG SLAC 07-Jan Tracking Detector R&D at Cornell University and.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Development of the Cylindrical Detector System for an experimental search for kaonic nuclei at J-PARC Fuminori Sakuma, RIKEN for the J-PARC E15 Collaboration.
October 28-th, 2005Straw tracker 1 Status of Straw Tracker for P236 P.L. Frabetti, V.Kekelidze, K.Kleinknecht, V.Peshekhonov, B.Peyaud, Yu.Potrebenikov,
Report of the NTPC Test Experiment in 2007Sep and Others Yohei Nakatsugawa.
Baryon Spectroscopy at Jlab and J-PARC K. Hicks (Ohio U.) Baryons2013 Conference 24 June 2013.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
Neutron Structure Functions and a Radial Time Projection Chamber The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton Recoil Detector.
Development of Tracking Detector with GEM Kunihiro Fujita RCNP, Osaka Univ. Yasuhiro Sakemi CYRIC, Tohoku Univ. Masaharu Nomachi Dep. of Phys., Osaka Univ.
M. Alfonsi LNF/INFN Cagliari 5 May 2006 M1R1 mechanical requirements  Space constraint Frame and pannel Pads readout and trigger sectors Gas inlet and.
Yosuke Watanabe….. University of Tokyo, RIKEN A, KEK C, Development of a GEM tracker for E16 J-PARC 1 Thanks to ???????????
Zian Zhu Magnet parameters Coil/Cryostat/Support design Magnetic field analysis Cryogenics Iron yoke structure Mechanical Integration Superconducting Magnet.
TPC Design Concept: From MicroBooNE to LAr20
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
Support and magnet coil KEK Hiroshi Yamaoka Nov. 10, ‘04.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
Target Magnets & Shielding Bob Weggel Particle Beam Lasers, Inc. Magnet Optimization Research Engineering, LLC. March 5,
22 September 2005 Haw05 1  (1405) photoproduction at SPring-8/LEPS H. Fujimura, Kyoto University Kyoto University, Japan K. Imai, M. Niiyama Research.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. hashimoto, H. Tokieda, T. Tsuji, K. Kawase,
A TPC for ILC CEA/Irfu, Apero, D S Bhattacharya, 19th June Deb Sankar Bhattacharya D.Attie, P.Colas, S. Ganjour,
2/9/04 1 LBNL LC-TPC Activities ● International LC-TPC R&D ● Physics and Detector Simulations ● Micromegas-based TPC R&D ● US-Japan TPC R&D Proposal ●
S. AUNE 15/09/08 Micromegas Bulk for CLAS12 tracker.
Start and Vertex Detector W. Boeglin, A.Klein Current Design: 3300 scintillating fibers 1mm diameter 3 double layers (1 axial, 2 stereo) cylindrical geometry.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Development of a Vertex Chamber with using GEM Yutaka Mizoi Osaka Electro-Communication University Colleagues; Tomokazu Fukuda, Shizu Minami, and Wataru.
Test of the GEM Front Tracker for the SBS Spectrometer at Jefferson Lab F. Mammoliti, V. Bellini, M. Capogni, E. Cisbani, E. Jensen, P. Musico, F. Noto,
1 Design of active-target TPC. Contents I.Physics requirements II.Basic structure III.Gas property IV.Electric field Distortion by ground Distortion of.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Abstract Beam Test of a Large-area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System V. Bhopatkar, M. Hohlmann, M. Phipps, J. Twigger,
The BoNuS Detector: A Radial Time Projection Chamber for tracking Spectator Protons Howard Fenker, Jefferson Lab This work was partially supported by DOE.
Reducing the Iron in the Endcap Yoke of CLIC_SiD Benoit Curé, Konrad Elsener, Hubert Gerwig, CERN CERN, June 2014 Linear Collider Detector Magnet Meeting.
Detectors for VEPP-2000 B.Khazin Budker Institute of Nuclear Physics 2 March 2006.
Yulan Li, Tsinghua Uni. TILC08, 3-6 March, 2008, Sendai, Japan Performance Study of TU-TPC Prototype Using Cosmic-ray  Tsinghua University TPC group 
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
GEM-MSTPC for direct measurements of astrophysical reaction rates H. Ishiyama 1, K. Yamaguchi 2, Y. Mizoi 3, Y.X. Watanabe 1, T. Hashimoto 4, M.H. Tanaka.
FGT Magnet C Assembly metric tons (59 US tons) -100mm thick steel plates -6.6m high x 3.1m wide x 1m deep (outer dimensions) -5m high x 2.25m wide.
Performances of a GEM-based TPC prototype for the AMADEUS experiment Outline: GEM-TPC in AMADEUS experiment; Prototype design & construction; GEM: principle.
Studies on the Drift Properties and Spatial Resolution Using a Micromegas-equipped TPC Philippines Japan Germany Canada France Asia High Energy Accelerator.
Simulation and reconstruction of CLAS12 Electromagnetic Calorimeter in GSIM12 S. Stepanyan (JLAB), N. Dashyan (YerPhI) CLAS12 Detector workshop, February.
SAMURAI magnet Hiromi SATO SAMURAI Team, RIKEN Requirements Geometry Magnetic field Superconducting coil and cooling system Present status of construction.
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
Design and performance of Active Target GEM-TPC R. Akimoto, S. Ota, S, Michimasa, T. Gunji, H. Yamaguchi, T. Hashimoto, H. Tokieda, T. Tsuji, S. Kawase,
Development of 100 MHz trackers
FEE for TPC MPD__NICA JINR
Tests of a MM octant prototype towards a Micromegas TPC Polarimeter
Updates on the Micromegas + GEM prototype
First tests on the roll-formed field cage.
Future Plan of the Neutral Kaon Spectrometer 2 (NKS2) Experiment
T2K TPC Micromegas Prototype: Test Results on Harp setup
Technical Feasibility of Anti-DID Coil
MAGIX Detectors Overview
Prototype TPC Field cage maximum drift length: 260 mm
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
Design of active-target TPC
Covering a Large Area ILC-TPC endplate
A DLC μRWELL with 2-D Readout
Presentation transcript:

Question 3 The proponents should show more details about the modification of the detector system to be built in P42 Answers 3-1. Liquid-Hydrogen Target 3-2. TPC Modifications 3-3. Two-particle Trigger

3-1. Liquid Hydrogen Target Basic design done with S. Ishimoto (KEK) Fit to the TPC target holder of 8cm f cylinder Reuse cryostat system of liquid-H target for E19 (penta-quark search) Need to construct newly Cryostat cylinder Vacuum cylinder Liquid-H cylinder Construction 1-2 M yen, 2 months Cryostat cylinder Vacuum cylinder Liquid-H cylinder

Liquid Hydrogen Target Minimize material Vacuum cylinder t=1mm CFRP (carbon fiber) conductor t=0.3mm Kapton Insulation to field strips Liquid-H cylinder t=0.4 mm PET used in E19 successfully Total thickness 0.28 gcm-2 radiation length ~0.7%

3-2. TPC Modifications E42 TPC P45 TPC Field strips Field cage Gas vessel Cathode GEM pad 560 670 300 50f 370 640f 143 Gating grid Beam level 520f 10 Target holder Field strips Field cage Gas vessel Cathode GEM pad 560 670 300 80f 370 640f 143 Gating grid Beam level 520f 10 Target holder Modifications for target diameter 50(E42)→80mmf (P45) To be replaced for P45 Gas vessel Field cage Target holder Share with E42 Gating Grid GEM Pad plane Electronics Electric Potential Calculations

Electric potential calculations 2-d calculation Gas vessel Field cage -13kV at maximum Target holder Double layer field strips dE/E < 0.1% in the almost whole active volume Prototype test for E42 at Pusan Univ. in Jan-Feb. 2013 2.5 mm pitch 2 mm width

3-3. Two-Particle Trigger Details are shown in answers to Questions 2 and 4 A pion (p+ or p-) beam with hits in 2 of 32 scintillators No K+ spectrometer trigger in E42 is required p- n p- p+

Backup

TPC prototype in Pusan Univ. Real drift length (55cm) Smaller pad area (10cmx10cm) Complete in early Feb. 2013 Lab test in Feb 2013 B-field test at J-PARC in Feb-Mar 2013

Costs Hydrogen Target ~ 2M yen TPC modifications ~ 3 M yen PMTs for Hodoscope 3-a. Normal PMT w/ magnetic shield ~ 4~10 M yen (depends on available PMTs from E03/07) 3-b. fine mesh PMT ~ 23 M yen Total cost 9~28 M yen to be shared with JAEA Kakenhi and Ohio (and other institutes)

Pad configuration Inner layer 2.1~2.7x9mm2 #plane=10 Outer layer 520 215.39 Inner layer 2.1~2.7x9mm2 #plane=10 Outer layer 2.3~2.4x12.5mm2 #plane=22 Total #pad 5768 Horizontal position resolution at B=1T <300mm At drift length>10cm

Mapping of pads to ASIC boards Colored pad group→1 AsAd 1 pad layer →1 AGET (ASIC) chip Symmetric w.r.t. the beam axis #AsAd = 28 #channel=7168 (#pad = 5768)

GEM configuration 500 Hit distribution (GEANT) 500 150 250 250 ・4 GEM (250mmx250mm) ・3-layer GEM structure 50mm + 50mm +100mm 500 Hit distribution (GEANT) Target position 500 150 250 Electrode division 12.5 mm width (20 div.) 1 sheet 41mm width(6 div.3 sheets ・Suppress discharge rate ・Minimize acceptance reduction in case an electrode is short-circuited 250

Potential configuration -13059.5 V 5500mm E=180V/cm Drift region Field strips Gating-grid Wires -3159.5 V 50mmf (Beryllium-Copper wire) Wire pitch = 1mm 4 mm E=180V/cm GEM1(50mm) -3087.5 V -2762.5 V 2 mm GEM2(50mm) -2112.5 V -1787.5 V 2 mm GEM3(100mm) -1137.5 V -650 V 2 mm Pad plane 0V

Field cage: Structure & materials A field cage for a TPC prototype The KPS Meeting, PyeongChang, 2012 Andrey Ni, PNU Field cage: Structure & materials The field shaping strips have a pitch of 2.5 mm and are intersected by 0.5 gaps. Mirror strips have the same parameters and displaced by half of a pitch. 10/25/2012 KPS meeting, PyeongChang 14

Electric field strips & mirror strips design A field cage for a TPC prototype The KPS Meeting, PyeongChang, 2012 Andrey Ni, PNU Electric field strips & mirror strips design 10/25/2012 KPS meeting, PyeongChang 15

Circuit plain for the connection of the field strips A field cage for a TPC prototype The KPS Meeting, PyeongChang, 2012 Andrey Ni, PNU Circuit plain for the connection of the field strips 10/25/2012 KPS meeting, PyeongChang 16

SC Helmholtz magnet Maxwell 3D calculation by Sung-Hyun Kim Bump Coil + Long bobbin : L-shaped SC coil Coil

y(cm) Bx Bz By Deviation (%) -30 -4.73E-03 -2.30E-03 -1.29E+00 3.3 -20 -3.09E-03 -3.92E-04 -1.35E+00 1.2 -10 -2.81E-03 1.05E-03 -1.80E-03 1.72E-03 -1.33E+00 0.1 +10 -3.19E-04 2.82E-03 +20 1.62E-04 6.02E-03 -1.32E+00 1.0 +30 2.54E-03 9.86E-03 -1.25E+00 5.9