Detector of “Schrödinger’s Cat” States of Light

Slides:



Advertisements
Similar presentations
Dr. Rüdiger Paschotta RP Photonics Consulting GmbH
Advertisements

1 Taoufik AMRI. Overview 3 Chapter II Quantum Protocols Chapter III Quantum States and Propositions Chapter VI Detector of « Schrödingers Cat » States.
Quantum Optics Seminar
Quantum trajectories for the laboratory: modeling engineered quantum systems Andrew Doherty University of Sydney.
From Gravitational Wave Detectors to Completely Positive Maps and Back R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta.
Quantum limits in optical interferometry R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1, M. Guta 2, K. Macieszczak 1,2, R. Schnabel.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
Displaced-photon counting for coherent optical communication Shuro Izumi.
Quantum enhanced metrology R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B. Smith 2, J. Lundeen 2, M. Kacprowicz.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 3.
Phase in Quantum Computing. Main concepts of computing illustrated with simple examples.
Parametric Inference.
Efficient Quantum State Tomography using the MERA in 1D critical system Presenter : Jong Yeon Lee (Undergraduate, Caltech)
A quantum optical beam n Classically an optical beam can have well defined amplitude AND phase simultaneously. n Quantum mechanics however imposes an uncertainty.
Multiframe Image Restoration. Outline Introduction Mathematical Models The restoration Problem Nuisance Parameters and Blind Restoration Applications.
Unique additive information measures – Boltzmann-Gibbs-Shannon, Fisher and beyond Peter Ván BME, Department of Chemical Physics Thermodynamic Research.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical Sciences, University of.
A Quantum Journey Quantum Physics And Quantum Physicists.
Towards a Universal Count of Resources Used in a General Measurement Saikat Ghosh Department of Physics IIT- Kanpur.
R. Demkowicz-Dobrzański 1, J. Kołodyński 1, K. Banaszek 1, M. Jarzyna 1, M. Guta 2 1 Faculty of Physics, Warsaw University, Poland 2 School of Mathematical.
School of something FACULTY OF OTHER School of Physics and Astronomy FACULTY OF MATHEMATICAL AND PHYSICAL SCIENCES Putting entanglement to work: Super-dense.
DUALITY PARTICLE WAVE PARTICLE DUALITY WAVE © John Parkinson.
Quantum computation speed-up limits from quantum metrological precision bounds R. Demkowicz-Dobrzański 1, K. Banaszek 1, J. Kołodyński 1, M. Jarzyna 1,
Using entanglement against noise in quantum metrology
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański 1, J. Kołodyński 1, M. Jarzyna 1, K. Banaszek.
Can small quantum systems learn? NATHAN WIEBE & CHRISTOPHER GRANADE, DEC
Multimode quantum optics Nicolas Treps Claude Fabre Gaëlle Keller Vincent Delaubert Benoît Chalopin Giuseppe Patera Virginia d’Auria Jean-François Morizur.
量子力學導論 Chap 1 - The Wave Function Chap 2 - The Time-independent Schrödinger Equation Chap 3 - Formalism in Hilbert Space Chap 4 - 表象理論.
Sense and sensitivity:,,robust’’ quantum phase estimation R. Demkowicz-Dobrzański 1, K. Banaszek 1, U. Dorner 2, I. A. Walmsley 2, W. Wasilewski 1, B.
From Quantum metrological precision bounds to Quantum computation speed-up limits R. Demkowicz-Dobrzański, M. Markiewicz Faculty of Physics, University.
Metrology and integrated optics Geoff Pryde Griffith University.
Chapter 9, 28 Modern Physics Introduction to Relativity and Quantum Physics.
Role of entanglement in extracting information on quantum processes
Sub-Planck Structure and Weak Measurement
Sampling Distributions and Estimators
Coherent and squeezed states of the radiation field
Matrix Product States in Quantum Metrology
Visual Recognition Tutorial
12. Principles of Parameter Estimation
Quantum-limited measurements:
Using Quantum Means to Understand and Estimate Relativistic Effects
Fundamental bounds on stability of atomic clocks
the illusion of the Heisenberg scaling
Is there a future for LIGO underground?
ICS 280 Learning in Graphical Models
Quantum-limited measurements:
GW150914: The first direct detection of gravitational waves
Recent Advances in Iterative Parameter Estimation
A Brief Introduction of RANSAC
Unconditional Security of the Bennett 1992 quantum key-distribution protocol over a lossy and noisy channel Kiyoshi Tamaki * *Perimeter Institute for.
NONLINEAR ADAPTIVE CONTROL
Chapter 2 Minimum Variance Unbiased estimation
Squeezed states in GW interferometers
Waves Electrons (and other particles) exhibit both particle and wave properties Particles are described by classical or relativistic mechanics Waves will.
Advanced LIGO A Quantum Limited Interferometer
Quantum Information with Continuous Variables
The Grand Unified Theory of Quantum Metrology
Summarizing Data by Statistics
Principles of Quantum Mechanics
The Grand Unified Theory of Quantum Metrology
Quantum mechanics II Winter 2012
Total Energy is Conserved.
RF readout scheme to overcome the SQL
Quantifying Biomolecule Diffusivity Using an Optimal Bayesian Method
Advanced Optical Sensing
Cat.
Measuring Distances in Space
12. Principles of Parameter Estimation
by Justin G. Bohnet, Brian C. Sawyer, Joseph W. Britton, Michael L
INTERNATIONAL CONFERENCE ON QUANTUM INFORMATION
Presentation transcript:

Detector of “Schrödinger’s Cat” States of Light

Detector of “Schrödinger’s Cat” States of Light Scheme of the detector Photon counting Non-classical Measurements Projective but Non-Ideal ! Squeezed Vacuum

Detector of “Schrödinger’s Cat” States of Light Retrodicted States and Quantum Properties : Idealized Case Projective but Non-Ideal !

Applications in Quantum Metrology

Applications in Quantum Metrology General scheme of the Predictive Estimation of a Parameter We must wait the results of measurements !

Applications in Quantum Metrology General scheme of the Retrodictive Estimation of a Parameter

Applications in Quantum Metrology Fisher Information and Cramér-Rao Bound Relative distance Fisher Information

Applications in Quantum Metrology Fisher Information and Cramér-Rao Bound Any estimation is limited by the Cramér-Rao bound Fisher Information is the variation rate of retrodictive probabilities under a variation of the parameter Number of repetitions

Applications in Quantum Metrology Retrodictive Estimation of a Parameter Projective but Non-Ideal ! Predictive Retrodictive The result “n” is uncertain even though we prepare its target state The target state is the most probable preparation leading to the result “n”

Applications in Quantum Metrology Illustration : Estimation of a phase-space displacement Optimal Minimum noise influence Fisher Information is optimal only when the measurement is projective and ideal

Applications in Quantum Metrology Predictive and Retrodictive Estimations of a phase-space displacement The Quantum Cramér-Rao Bound is reached …