Low energy nuclear collective modes and excitations

Slides:



Advertisements
Similar presentations
1CEA/DAM/DIF/DPTA/SPN Workshop ESNT, Saclay, june 28- july Giant resonances and inertia parameters Within the QRPA with the Gogny force in axial.
Advertisements

Modern Theory of Nuclear Structure, Exotic Excitations and Neutrino-Nucleus Reactions N. Paar Physics Department Faculty of Science University of Zagreb.
Consistent analysis of nuclear level structures and nucleon interaction data of Sn isotopes J.Y. Lee 1*, E. Sh. Soukhovitskii 2, Y. D. Kim 1, R. Capote.
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Giant resonances, exotic modes & astrophysics
Spectroscopy at the Particle Threshold H. Lenske 1.
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
CEA DSM Irfu Shell evolution towards 100 Sn Anna Corsi CEA Saclay/IRFU/SPhN.
RIKEN, March 2006: Mean field theories and beyond Peter Ring RIKEN, March 20, 2006 Technical University Munich RIKEN-06 Beyond Relativistic.
HL-5 May 2005Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-5) Collective excitations of nuclei photo-excitation of GDR particle-hole excitations.
CEA DSM Irfu 14 Oct Benoît Avez - [Pairing vibrations with TDHFB] - ESNT Workshop1 Pairing vibrations study in the Time-Dependent Hartree-Fock Bogoliubov.
Isospin dependence and effective forces of the Relativistic Mean Field Model Georgios A. Lalazissis Aristotle University of Thessaloniki, Greece Georgios.
12 June, 2006Istanbul, part I1 Mean Field Methods for Nuclear Structure Part 1: Ground State Properties: Hartree-Fock and Hartree-Fock- Bogoliubov Approaches.
John Daoutidis October 5 th 2009 Technical University Munich Title Continuum Relativistic Random Phase Approximation in Spherical Nuclei.
Double beta decay nuclear matrix elements in deformed nuclei O. Moreno, R. Álvarez-Rodríguez, P. Sarriguren, E. Moya de Guerra F. Šimkovic, A. Faessler.
Systematics of the First 2 + Excitation in Spherical Nuclei with Skyrme-QRPA J. Terasaki Univ. North Carolina at Chapel Hill 1.Introduction 2.Procedure.
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS
Introduction to Nuclear Physics
M. Girod, F.Chappert, CEA Bruyères-le-Châtel Neutron Matter and Binding Energies with a New Gogny Force.
Etat de lieux de la QRPA = state of the art of the QRPA calculations G. Colò / E. Khan Espace de Structure Nucléaire Théorique SPhN, Saclay, January 11-12,
DPG Tagung, Breathing mode in an improved transport model T. Gaitanos, A.B. Larionov, H. Lenske, U. Mosel Introduction Improved relativistic transport.
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
Tomohiro Oishi 1,2, Markus Kortelainen 2,1, Nobuo Hinohara 3,4 1 Helsinki Institute of Phys., Univ. of Helsinki 2 Dept. of Phys., Univ. of Jyvaskyla 3.
Effects of self-consistence violations in HF based RPA calculations for giant resonances Shalom Shlomo Texas A&M University.
Alex Brown UNEDF Feb Strategies for extracting optimal effective Hamiltonians for CI and Skyrme EDF applications.
Nuclear Structure and dynamics within the Energy Density Functional theory Denis Lacroix IPN Orsay Coll: G. Scamps, D. Gambacurta, G. Hupin M. Bender and.
Systematic study of isovector dipole mode up to A=50 KEK 研究会「原子核・ハドロン物理 : 横断研究会」 KEK, 2007 年 11 月 19 日 -21 日 稲倉恒法 中務孝 矢花一浩 ( 筑波大学 ) ( 理研 ) ( 筑波大学 )
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Pygmy Dipole Resonance in 64Fe
A new statistical scission-point model fed with microscopic ingredients Sophie Heinrich CEA/DAM-Dif/DPTA/Service de Physique Nucléaire CEA/DAM-Dif/DPTA/Service.
ESNT Saclay February 2, Structure properties of even-even actinides at normal- and super-deformed shapes J.P. Delaroche, M. Girod, H. Goutte, J.
Role of vacuum in relativistic nuclear model A. Haga 1, H. Toki 2, S. Tamenaga 2 and Y. Horikawa 3 1. Nagoya Institute of Technology, Japan 2. RCNP Osaka.
Nuclear Collective Excitation in a Femi-Liquid Model Bao-Xi SUN Beijing University of Technology KITPC, Beijing.
Fission Collective Dynamics in a Microscopic Framework Kazimierz Sept 2005 H. Goutte, J.F. Berger, D. Gogny CEA Bruyères-le-Châtel Fission dynamics with.
Anomalous two-neutron transfer in neutron-rich Ni and Sn isotopes studied with continuum QRPA H.Shimoyama, M.Matsuo Niigata University 1 Dynamics and Correlations.
ExperimentSpokesmanGoalRunning time Thesis? Scissors ModeTonchevAnalyze Scissors Mode excitations in actinide nuclei Pgymy DipoleTonchevAnalyze evolution.
NEUTRON SKIN AND GIANT RESONANCES Shalom Shlomo Cyclotron Institute Texas A&M University.
© 2003 By Default! A Free sample background from Slide 1  nuclear structure studies nn uclear structure studies Who am.
July 29-30, 2010, Dresden 1 Forbidden Beta Transitions in Neutrinoless Double Beta Decay Kazuo Muto Department of Physics, Tokyo Institute of Technology.
Evolution Of Shell Structure, Shapes & Collective Modes Dario Vretenar
First Gogny conference, TGCC December 2015 DAM, DIF, S. Péru QRPA with the Gogny force applied to spherical and deformed nuclei M. Dupuis, S. Goriely,
Giant and Pygmy Resonance in Relativistic Approach The Sixth China-Japan Joint Nuclear Physics May 16-20, 2006 Shanghai Zhongyu Ma China Institute of Atomic.
F. C HAPPERT N. P ILLET, M. G IROD AND J.-F. B ERGER CEA, DAM, DIF THE D2 GOGNY INTERACTION F. C HAPPERT ET AL., P HYS. R EV. C 91, (2015)
Deformed QRPA code: Final tests and first applications J. T. and J. Engel Univ. North Carolina 1.Main accomplishments since last meeting, flow of calculation,
Research of high energy collective states at high excitation energy in nuclei N. Alamanos, J. Arvieux, B. Berthier, B. Bonin, G. Bruge, M. Buenerd, J.
Variational Multiparticle-Multihole Configuration Mixing Method with the D1S Gogny force INPC2007, Tokyo, 06/06/2007 Nathalie Pillet (CEA Bruyères-le-Châtel,
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
CERN Summer student program 2011 Introduction to Nuclear Physics S. Péru Introduction to Nuclear Physics S.PÉRU 3/3.
Gogny-TDHFB calculation of nonlinear vibrations in 44,52 Ti Yukio Hashimoto Graduate school of pure and applied sciences, University of Tsukuba 1.Introduction.
Theoretical Nuclear Physics Laboratory
Continuum quasiparticle linear response theory using the Skyrme functional for exotic nuclei University of Jyväskylä Kazuhito Mizuyama, Niigata University,
Pairing Correlation in neutron-rich nuclei
Nuclear structure far from stability
Probing Quantum Flows in Deformed Pygmy Dipole Modes
Probing the neutron skin thickness in collective modes of excitation
Ch. Stoyanov Two-Phonon Mixed-Symmetry States in the Domain N=52
Nuclear Structure Tools for Continuum Spectroscopy
Zao-Chun Gao(高早春) China Institute of Atomic Energy Mihai Horoi
Structure and dynamics from the time-dependent Hartree-Fock model
Microscopic studies of the fission process
Emmanuel Clément IN2P3/GANIL – Caen France
The continuum time-dependent Hartree-Fock method for Giant Resonances
Self-consistent theory of stellar electron capture rates
Nuclear excitations in relativistic nuclear models
Daisuke ABE Department of Physics, University of Tokyo
Di-nucleon correlations and soft dipole excitations in exotic nuclei
A self-consistent Skyrme RPA approach
Kyorin University Mitsuru Tohyama
Constraining the Nuclear Equation of State via Nuclear Structure observables 曹李刚 中科院近物所 第十四届全国核结构大会,湖州,
Department of Physics, Sichuan University
Presentation transcript:

Low energy nuclear collective modes and excitations Low energy excitations in Neon isotopes, N=16 isotones and 68Ni within QRPA and Gogny force Sophie Péru Marco Martini

Beyond “mean field” … with RPA or QRPA RPA approaches describe all multipolarties and all parities, collective states and individual ones, low energy and high energy states with the same accuracy. A l’approximation de faible amplitude , i.e. pour des noyaux « harmoniques » E δ2E/δq2>0 δ2E/δq2 δE/δq=0 qμν 2

Formalism HFB+QRPA {b+ b} quasi-particle (qp) creation and annihilation operators. In axial symmetry , QRPA states {q+} are obtained for each block K . (Kp≤Jp) They are solution of In our approach, The effective interaction D1S is used both in the HFB mean field and in the QRPA matrix.

High energy collective states: giant resonances Giant resonances are related to nuclear matter properties Monopole Dipole Quadripole Octupole IS GMR spurious state GQR IV GMR IV GDR

Spurious states « treatment »

Approach limited to Spherical nuclei with no pairing RPA in spherical symmetry Giant resonances in exotic nuclei: 100Sn, 132Sn, 78Ni; S. Péru, J.F. Berger, and P.F. Bortignon, Eur. Phys. Jour. A 26, 25-32 (2005) Monopole Dipole Approach limited to Spherical nuclei with no pairing  Such study have shown the role of the consistence between mean field and RPA matrix.

Potential Energy Surfaces QRPA in axial symmetry : Potential Energy Surfaces

Formalism Restoration of rotational symmetry for deformed states For example: Jπ = 2+ In intrinsic frame Using time reversal symmetry, three independent calculations (Kπ = 0+, 1+, 2+) are needed.

IV Dipole

Quadrupole D.H. Youngblood, Y.-W. Lui, and H.L. Clark, Phys.Rev.C 60 (1999)014304 Quadrupole D.H. Youngblood, Y.-W. Lui, and H.L.Clark, Phys. Rev. C, 65, (2002) 034302

dipole response for Neon isotopes Increasing neutron number PDR and shift to low energies Increasing of fragmentation 20Ne 22Ne 18Ne PDR proton 24Ne 26Ne 28Ne PDR PDR PDR

B(E1) distributions

Evolution with A Néon isotopes N=16 Isotones Ne Ne Ne Ne Mg Si

ρ δρ 26Ne Pygmy w.f.(10.7 MeV) Proton: 2qp contrib. [e fm^-3] 15.97 MeV 2s1/2 1p1/2 X2=0.04 17.60 MeV 1d5/2 1p3/2 X2=0.02 17.48 MeV 1f7/2 1d5/2 X2=0.01 Neutron: 2qp contrib. 10.52 MeV 2p3/2 2s1/2 X2=0.67 13.68 MeV 1f7/2 1d5/2 X2=0.10 12.43 MeV 2p1/2 2s1/2 X2=0.09 10.82 MeV 2p3/2 1d3/2 X2=0.03 18.50 MeV 1d3/2 1p1/2 X2=0.01 [e fm^-3] [fm^-3]

ρ δρ 28Mg Pygmy w.f. (11.6 MeV) [e fm^-3] Proton: 2qp contrib. [fm^-3] 16.22 MeV 2s1/2 1p1/2 X2=0.06 16.02 MeV 1f7/2 1d5/2 X2=0.02 Neutron: 2qp contrib. 11.68 MeV 2p3/2 2s1/2 X2=0.40 11.93 MeV 2p3/2 1d3/2 X2=0.33 14.18 MeV 1f7/2 1d5/2 X2=0.06 13.98 MeV 2p1/2 2s1/2 X2=0.06 14.21 MeV 2p1/2 1d5/2 X2=0.03 [e fm^-3] δρ [fm^-3]

ρ δρ 30Si Pygmy w.f. (12.2 MeV) [e fm^-3] Proton: 2qp contrib 15.92 MeV 2s1/2 1p1/2 X2=0.19 14.33 MeV 1f7/2 1d5/2 X2=0.07 17.15 MeV 2p3/2 1d5/2 X2=0.01 Neutron: 2qp contrib. 12.61 MeV 2p3/2 2s1/2 X2=0.44 14.55 MeV 1f7/2 1d5/2 X2=0.11 12.79 MeV 2p3/2 1d3/2 X2=0.07 15.23 MeV 2p1/2 2s1/2 X2=0.07 [e fm^-3] δρ [fm^-3]

ρ δρ 18Ne Pygmy w.f.(14.2 MeV) Proton: 2qp contrib. 15.99 MeV 1f7/2 1d5/2 X2=0.26 15.98 MeV 2p3/2 1d5/2 X2=0.23 13.75 MeV 2s1/2 1p1/2 X2=0.12 18.19 MeV 2p3/2 2s1/2 X2=0.09 16.95 MeV 1d5/2 1p3/2 X2=0.09 19.14 MeV 2p1/2 2s1/2 X2=0.04 Neutron: 2qp contrib. 15.78 MeV 1d3/2 1p3/2 X2=0.04 14.18 MeV 2s1/2 1p1/2 X2=0.04 ρ δρ [e fm^-3] [fm^-3]

Correlations between PDR and symmetry energy Carbone et al. Phys. Rev. C (2010) Effective Lagrangians Skyrme Forces EWSR [%] L [MeV] D1S 1,2 22,5 D1N 1,5 33,6 D1M 1,3 25,3 Similar study with Gogny: (absent in literature) M. Martini

Dipole Resonances in 68Ni Gogny Effective Lagrangian Comparison among models and forces Skyrme M. Martini

Dipole response for Zr isotopes : B(E1) B(M1) 86Zr 88Zr 90Zr M1 γ strength for 92Zr, H. Utsunomiya et al, PRL 100, 162502 (2008) 92Zr 94Zr 96Zr S.Goriely, H. Goutte, S. Hilaire, M. Martini, S. Péru, …

= 5 Dimension Collective Hamiltonian Beyond mean field … with GCM (GCM+GOA 2 vibr. + 3 rot.) = 5 Dimension Collective Hamiltonian 5DCH

HFB+QRPA / HFB+5DCH with the same interaction: A. Obertelli, et al, Phys. Rev. C 71, 024304 (2005) N=16 isotones S. Péru,AIPS Conference proceedings No. 1165,NSD09, (Melville, New York, 2009), p165

QRPA/5DCH Sn isotopes

Ni isotopes S. Péru,AIPS Conference proceedings No. 1165,NSD09, (Melville, New York, 2009), p165

Spectroscopy in neutron rich Ni isotopes within QRPA L. Gaudefroy, S. Péru …

Spectroscopy in neutron rich Ni isotopes within QRPA

0+ states in 68Ni within QRPA M. Martini & S. Péru

0+ states in 68Ni within QRPA Transition densities Protons Neutrons Transition densities Protons Neutrons Protons Neutrons M. Martini, S. Péru …

… beyond the nuclear structure : Test of QRPA and 5DCH (GCM) wave functions in proton inelastic scattering… 36S HFB+5DCH E (2+1) = 2.34 MeV B(E2) = 375 e2fm4 HFB+QRPA E (2+1) = 3.29 MeV B(E2) = 139.7 e2fm4 Exp E (2+1) = 3.29 MeV B(E2) = 100 e2fm4 E. Bauge and S. Péru

differential cross sections for 14.1 MeV neutron on 238 U (a,c). Comparison between experimental data (circles) and one-step contributions (full curves) to the double- differential cross sections for 14.1 MeV neutron on 238 U (a,c). M. Dupuis ,E. Bauge,L. Bonneau,J.-P. Delaroche ,T. Kawano ,S. Karataglidis and S. Péru, Proceedings of the Second International Workshop on Nuclear Compound Reactions and Related Topics, (2010).