Tracking muons in Panda(Root)

Slides:



Advertisements
Similar presentations
LDC strip angle optimization SiLC Genf, Sept. 10, 2007M. Regler, M. Valentan, W. Mitaroff Optimization of the strip angles of the LDC endcaps using the.
Advertisements

Terzo Convegno sulla Fisica di ALICE - LNF, Andrea Dainese 1 Preparation for ITS alignment A. Dainese (INFN – LNL) for the ITS alignment group.
Background effect to Vertex Detector and Impact parameter resolution T. Fujikawa(Tohoku Univ.) Feb LC Detector Meeting.
1 Alignment using high Pt tracks 1.Small w.r.t. large barrel chambers 2.BEE w.r.t. EC chambers 3.Endcap – Barrel 4.BIS8 w.r.t. BIS7 5.Inner tracker – Muon.
Tracking Efficiency Studies for the SD Option V. L. Rykov Wayne State University and RIKEN Outlook: SD and LD tracker’s geometries and simulation framework.
Review of PID simulation & reconstruction in G4MICE Yordan Karadzhov Sofia university “St. Kliment Ohridski” Content : 1 TOF 2 Cerenkov.
Algorithms and Methods for Particle Identification with ALICE TOF Detector at Very High Particle Multiplicity TOF simulation group B.Zagreev ACAT2002,
October 20th, 2006 A. Mazzacane 1 4 th Concept Software First Results.
The LiC Detector Toy M. Valentan, M. Regler, R. Frühwirth Austrian Academy of Sciences Institute of High Energy Physics, Vienna InputSimulation ReconstructionOutput.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
Tracking at LHCb Introduction: Tracking Performance at LHCb Kalman Filter Technique Speed Optimization Status & Plans.
1 ACFA8, July , 2005, Youngjoon Kwon (Yonsei Univ.) Simulation / Recon. Workgroup summary for ACFA8  The Framework for Sim./Recon. Status report.
FAIR Simulation & Analysis Framework FairRoot M. Al-Turany, D. Bertini, F. Uhlig GSI-IT.
Моделирование электромагнитного форм-фактора протона во времени-подобной области в среде PandaRoot Д. Морозов ИФВЭ (Протвино)
International Workshop on Linear Colliders, Geneve Muon reconstruction and identification in the ILD detector N. D’Ascenzo, V.Saveliev.
Impact parameter resolution study for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
Darmstadt, 15. November 2015 Tobias Stockmanns, FZ Jülich1 A STEP to ROOT converter for the FairRoot framework ALICE-FAIR Computing Meeting, GSI,
Operation of the CMS Tracker at the Large Hadron Collider
PID for super Belle (design consideration) K. Inami (Nagoya-u) - Barrel (TOP counter) - Possible configuration - Geometry - Endcap (Aerogel RICH) - Photo.
The Start point to discuss possible variants of a future Detector Set Up. N.Smirnov, Physics Department, Yale University ( many thanks for preliminary.
Cosmic Rays for ATLAS Commissioning Commissioning Meeting ATLAS Physics Workshop Athens May 2003 Halo+Cosmics group: M.Boonekamp, F.Gianotti, R.McPherson,
Detector Monte-Carlo ● Goal: Develop software tools to: – Model detector performance – Study background issues – Calculate event rates – Determine feasibility.
Tracking in High Density Environment
PANDA GSI 13. December 2006 PID TAG Georg Schepers PANDA Technical Assessment Group PID Status Report G. Schepers for the PID TAG GSI PID TAG.
May 31th, 2007 LCWS C. Gatto 1 Tracking Studies in the 4 th Concept On behalf of 4th Concept Software Group D. Barbareschi V. Di Benedetto E. Cavallo.
Track reconstruction in TRD and MUCH Andrey Lebedev Andrey Lebedev GSI, Darmstadt and LIT JINR, Dubna Gennady Ososkov Gennady Ososkov LIT JINR, Dubna.
Global Tracking for CBM Andrey Lebedev 1,2 Ivan Kisel 1 Gennady Ososkov 2 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany 2 Laboratory.
8 April 2000Karel Safarik: Tracking in ALICE1 Tracking in ALICE  OUTLOOK: Requirements History Tracking methods Track finding Tracking efficiency Momentum.
ESTAR Upgrade Ming Shao USTC. eRHIC – the future of RHIC STAR Regional Meeting, Weihai, /24/2012.
K 0 s reconstruction in ALICE Giuseppe Lo Re INFN, Sezione di Catania, and Dipartimento di Fisica e Astronomia, Università di Catania, Italy, March 2002.
1 Performance of a Magnetised Scintillating Detector for a Neutrino Factory Scoping Study Meeting U.C. Irvine Monday 21 st August 2006 M. Ellis & A. Bross.
TeV muons: from data handling to new physics phenomena Vladimir Palichik JINR, Dubna NEC’2009 Varna, September 07-14, 2009.
Moore/MUID validation with The MOORE group.
12/20/2006ILC-Sousei Annual KEK1 Particle Flow Algorithm for Full Simulation Study ILC-Sousei Annual KEK Dec. 20 th -22 nd, 2006 Tamaki.
TeV Muon Reconstruction Vladimir Palichik JINR, Dubna NEC’2007 Varna, September 10-17, 2007.
SiD Tracking in the LOI and Future Plans Richard Partridge SLAC ALCPG 2009.
2005/07/12 (Tue)8th ACFA Full simulator study of muon detector and calorimeter 8th ACFA Workshop at Daegu, Korea 2005/07/12 (Tue) Hiroaki.
AliRoot survey: Reconstruction P.Hristov 11/06/2013.
BESIII offline software group Status of BESIII Event Reconstruction System.
Tracking software of the BESIII drift chamber Linghui WU For the BESIII MDC software group.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
MAUS Status A. Dobbs CM43 29 th October Contents MAUS Overview Infrastructure Geometry and CDB Detector Updates CKOV EMR KL TOF Tracker Global Tracking.
Mitglied der Helmholtz-Gemeinschaft Hit Reconstruction for the Luminosity Monitor March 3 rd 2009 | T. Randriamalala, J. Ritman and T. Stockmanns.
Track Reconstruction in MUCH and TRD Andrey Lebedev 1,2 Gennady Ososkov 2 1 Gesellschaft für Schwerionenforschung, Darmstadt, Germany 2 Laboratory of Information.
14/06/2010 Stefano Spataro Status of LHE Tracking and Particle Identification Status of LHE Tracking and Particle Identification Stefano Spataro III Panda.
Review and Perspective of Muon Studies Marco Destefanis Università degli Studi di Torino PANDA Collaboration Meeting GSI (Germany) September 5-9, 2011.
1 The Scintillation Tile Hodoscope (SciTil) ● Motivation ● Event timing/ event building/ software trigger ● Conversion detection ● Charged particle TOF.
Iterative local  2 alignment algorithm for the ATLAS Pixel detector Tobias Göttfert IMPRS young scientists workshop 17 th July 2006.
PhD thesis: Simulation & Reconstruction for the PANDA Barrel DIRC Official name: Open charm analysis tools Supervisor: Prof. Klaus Peters Maria Patsyuk.
Susanna Costanza - Pavia Group PANDA C.M., Stockholm – June 14, 2010
GenFit and RAVE in sPHENIX under Fun4All
(LHE) tracking and PID packages
New TRD (&TOF) tracking algorithm
Dipole Magnetic Field Effect on the Antiproton Beam
for Particle Identification
Muon simulation status from Dubna
M. Kuhn, P. Hopchev, M. Ferro-Luzzi
Propagation of Reconstructed Tracks
Dubna/JINR Status & Plans
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
Bonn Test Station data analysis with PandaRoot
Reconstruction status
Tracking Pattern Recognition
ITEP /4/2010 – II Panda Russia Meeting – Maria Pia Bussa
The LHC collider in Geneva
STAR Geometry and Detectors
Preparation for ITS alignment
Software Development for the PANDA Barrel DIRC
STAR Detector Event selection and triggers Corrections to data
MUC simulation and reconstruction
Presentation transcript:

Tracking muons in Panda(Root) Stefano Spataro ISTITUTO NAZIONALE DI FISICA NUCLEARE Sezione di Torino

Overview Geometry Implementations MDT Pattern Recognition Reconstruction for global PID In the next future

Geometry Implementations

Torino Design simplified geometry ArCo2 planes 2,5 cm thickness Barrel (George Serbanut) simplified geometry ArCo2 planes 2,5 cm thickness PndMdt *Muo = new PndMdt("MDT",kTRUE): Muo->SetBarrel("torino"); Muo->SetEndcap("torino"); Muo->SetMuonFilter("torino"); fRun->AddModule(Muo); Barrel Encap Muon Filter

Dubna Design Barrel Encap Muon Filter Forward detailed geometry (Valery Rodionov) PndMdt *Muo = new PndMdt("MDT",kTRUE); Muo->SetBarrel("muon_TS_barrel_v3_noGeo.root"); Muo->SetEndcap("muon_TS_endcap_noGeo.root"); Muo->SetForward("muon_Forward_noGeo.root"); Muo->SetMuonFilter("muon_MuonFilter_noGeo.root"); fRun->AddModule(Muo); Barrel Encap Muon Filter Forward detailed geometry

Full CAD conversion (Tobias Stockmanns) Magnet Design Full CAD conversion (Tobias Stockmanns) FairModule *Magnet= new PndMagnet("MAGNET"); Magnet->SetGeometryFileName ("FullSolenoid_V842.root"); fRun->AddModule(Magnet); Coils CAD conversion (Tobias Stockmanns) FairModule *Magnet= new PndMagnet("MAGNET"); Magnet->SetGeometryFileName ("FullSuperconductingSolenoid_V831.root"); fRun->AddModule(Magnet); MDT Design - TDR (George Serbanut) PndMdt *Muo = new PndMdt("MDT",kTRUE); Muo->SetBarrel… Muo->SetMdtMagnet(kTRUE); Muo->SetMdtMFIron(kTRUE); fRun->AddModule(Muo);

some overlaps still present sometimes the analysis can crash Magnet Design CAD conversion files some overlaps still present sometimes the analysis can crash for the moment is it safer to use MDT version MDT Design 10  @3GeV/c Barrel Endcap Muon Filter Forward CPU Time Torino 3 sec Dubna 3 min Dubna Endcap does not follow TDR (overlaps with yoke) Dubna geometry not optimized

MDT Pattern Recognition

Detector Setup GEANT3 MVD TPC TOF DIRC EMC GEM MDT (Torino) COILS (CAD) YOKE (MDT) DISC PIPE

MdtHit Energy Loss > 0 Simulation Setup GEANT3 // ----- MDT hit producers --------------------------------- PndMdtHitProducerIdeal* mdtHitProd = new PndMdtHitProducerIdeal(); mdtHitProd->SetPositionSmearing(0.3); // position smearing [cm] fRun->AddTask(mdtHitProd); PndMdtTrkProducer* mdtTrkProd = new PndMdtTrkProducer(); mdtTrkProd->SetVerbose(10); fRun->AddTask(mdtTrkProd); MdtHit Energy Loss > 0 MdtHit Position Smearing 0.3 cm -> 1 cm bar

MdtHit from inner layer Pattern Recognition MdtHit from inner layer one tracklet PndMdtTrk closest hit in next layer in a search cone and so on… and so on… Enccap and Muon Filter threated as single module

MdtHitTrk Information Pattern Recognition MdtHitTrk Information Mdt Module (barrel/EC/hybrid) Number of fired layers Maximum fired layer Number of hits inside search cone for each layer Index of the closest MdtHit Number of hits inside search cone Distance from hit in previous layer Layer distance

Geometry Parametrization Layer Position recognised from geometry Independent from Torino/Dubna design Barrel Endcap+MF TORINO Torino -> Working Dubna -> Muon Filter missing Dubna -> Double Layer 0 (?)

Hybrid Pattern Recognition 5000  3 GeV/c [5°, 90°] HYBRID ENDCAP+MF BARREL ENDCAP+MF HYBRID

 @ 1 GeV/c  @ 1 GeV/c Test Simulation Data 5000 events PID  ,  P  1, 3 GeV/c   [5°, 90°]   [0°, 360°] EC BARREL  @ 1 GeV/c EC BARREL Momentum Loss Vertex – MDT Layer 0 DISC is missing

Hit Distances Hit Distance Layer Distance  @ 3 GeV/c

 @ 3 GeV/c BARREL ENDCAP+MF HYBRID BARREL ENDCAP+MF HYBRID

 @ 3 GeV/c hybrid barrel EC+MF secondaries

 @ 3 GeV/c  @ 3 GeV/c Hit Distances – 3 GeV/c BARREL ENDCAP+MF HYBRID  @ 3 GeV/c BARREL ENDCAP+MF HYBRID  @ 3 GeV/c

Hit Multiplicities – 3 GeV/c BARREL ENDCAP+MF HYBRID  @ 3 GeV/c BARREL ENDCAP+MF HYBRID  @ 3 GeV/c

Fired Layers – 3 GeV/c  @ 3 GeV/c  @ 3 GeV/c

Fired Layers – 3 GeV/c             BARREL EC+MF HYBRID log scale log scale log scale      

 @ 1 GeV/c  @ 1 GeV/c Hit Distances – 1 GeV/c BARREL ENDCAP+MF HYBRID  @ 1 GeV/c BARREL ENDCAP+MF HYBRID  @ 1 GeV/c

Hit Multiplicities – 1 GeV/c BARREL ENDCAP+MF HYBRID  @ 1 GeV/c BARREL ENDCAP+MF HYBRID  @1 GeV/c

Fired Layers – 1 GeV/c  @ 1 GeV/c  @ 1 GeV/c

Fired Layers – 1 GeV/c             BARREL EC+MF HYBRID log scale log scale log scale      

Reconstruction for global PID

Track Propagation to MDT layers MDT hit (layer 0) GEANE extrapolation LHE/genfit tracking

Extrapolation Residuals ENDCAP + MF BARREL  @ 3 GeV/c @ 3 GeV/c  @ 1 GeV/c  @ 3 GeV/c @ 3 GeV/c  @ 1 GeV/c

 @ 3 GeV/c @ 3 GeV/c  @ 1 GeV/c Barrel Propagation

Reconstruction of ’  J/ + - J/  + - MC  ! MC  

Jobs still to do Geometry Implementation – Some fixes required Pattern Recognition working – Improvement needed PID Correlation – P dependent matching window Kalman with MDT hits