Validation of CYCLOPES, MODIS & MERIS PRODUCTS

Slides:



Advertisements
Similar presentations
Earth Observation for Agriculture – State of the Art – F. Baret INRA-EMMAH Avignon, France 1.
Advertisements

Evaluating Calibration of MODIS Thermal Emissive Bands Using Infrared Atmospheric Sounding Interferometer Measurements Yonghong Li a, Aisheng Wu a, Xiaoxiong.
Page 1GlobColour CDR Meeting – July 10-11, 2006, ESRIN All rights reserved © 2006, ACRI-ST Resulting Technical Specification.
1 Characterization of Spatial Heterogeneity for Scaling Non Linear Processes S. Garrigues 1, D. Allard 2, F. Baret 1. 1 INRA-CSE, Avignon, France 2 INRA-Biométrie,
Scaling Biomass Measurements for Examining MODIS Derived Vegetation Products Matthew C. Reeves and Maosheng Zhao Numerical Terradynamic Simulation Group.
Daytime Cloud Shadow Detection With MODIS Denis Grljusic Philipps University Marburg, Germany Kathy Strabala, Liam Gumley CIMSS Paul Menzel NOAA / NESDIS.
Development of biophysical products for PROBA-V Interest of 300m resolution F. Baret, M. Weiss & L. Suarez.
1 POSTEL, AN INITIATIVE TO DEVELOP BIOGEOPHYSICAL GEOCODED PRODUCTS Leroy, M., Bicheron, P., Lacaze, R., Niño, F., Bégni, G. - Médias-France.
Mike Barnsley & Tristan Quaife, UWS. GLC2000, Ispra, March Estimating Land Surface Biophysical Properties using SPOT-4 VGT Mike Barnsley and Tristan.
Biophysical variables estimates from Venµs, FORMOSAT2 & SENTINEL2 F. Baret, M. Weiss, R. Lopez, B. de Solan.
1 Has EO found its customers? GLC 2000 Workshop ‘Methods’ Objectives F. Achard Global Vegetation Monitoring Unit.
Aerosol radiative effects from satellites Gareth Thomas Nicky Chalmers, Caroline Poulsen, Ellie Highwood, Don Grainger Gareth Thomas - NCEO/CEOI-ST Joint.
16/06/20151 Validating the AVHRR Cloud Top Temperature and Height product using weather radar data COST 722 Expert Meeting Sauli Joro.
Princeton University Global Evaluation of a MODIS based Evapotranspiration Product Eric Wood Hongbo Su Matthew McCabe.
BOSTON UNIVERSITY GRADUATE SCHOOL OF ART AND SCIENCES LAI AND FPAR ESTIMATION AND LAND COVER IDENTIFICATION WITH MULTIANGLE MULTISPECTRAL SATELLITE DATA.
CSIRO LAND and WATER Estimation of Spatial Actual Evapotranspiration to Close Water Balance in Irrigation Systems 1- Key Research Issues 2- Evapotranspiration.
Centre for Geo-information Fieldwork: the role of validation in geo- information science RS&GIS Integration Course (GRS ) Lammert Kooistra Contact:
CAN_EYE 1/11 The CAN_EYE software for processing Digital Hemispherical Photos F. Baret, M. Weiss.
MODIS/AIRS Workshop MODIS Level 2 Products 5 April 2006 Kathleen Strabala Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison.
10/03/2005NOV-3300-SL M. Weiss, F. Baret D. Allard, S. Garrigues From local measurements to high spatial resolution VALERI maps.
LAND PRODUCT VALIDATION update F. Baret, J. Nightingale, S. Garrigues, J. Nickeson Missoula, 17 June /29.
Antwerp march A Bottom-up Approach to Characterize Crop Functioning From VEGETATION Time series Toulouse, France Bucharest, Fundulea, Romania.
The University of Mississippi Geoinformatics Center NASA MRC RPC – 11 July 2007 Greg Easson, Ph.D. Robert Holt, Ph.D. A. K. M. Azad Hossain University.
VALERI meeting, Avignon, 10 March 2005 Barrax validation agricultural site: Leassons learnt during SPARC campaigns B. Martínez, F. Camacho-de Coca, F.J.
VALERI, Avignon 10 March 2005 Stephen Plummer Olivier Arino (ESA), Freddy Fierens (VITO Consortium), Jing Chen (U. Toronto), Gerard Dedieu.
© geoland2 consortium European Commission Fast Track Service Land within the GMES initiative in FP-7 Approach for validation of geoland2 products: phenological.
Radiometric Correction and Image Enhancement Modifying digital numbers.
1. School of Geography, University of Southampton, UK 2. Unité Mixte de Recherche Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes, INRA,
Evaluation of the Suomi NPP VIIRS Land Surface Temperature Product 1 CICS, University of Maryland, College Park; 2 STAR/NESDIS/NOAA Yuling Liu 1, Yunyue.
F. Baret, J. Morissette, R. Fernandes, J. L. Champeaux, R. Myneni, J
QA filtering of individual pixels to enable a more accurate validation of aerosol products Maksym Petrenko Presented at MODIS Collection 7 and beyond Retreat.
F. Baret, O. Marloie, J.F. Hanocq, B. de Solan, D. Guyon, A. Ducoussou
Some thoughts on the validation of fire products Ivan Csiszar UMd.
Introduction GOES-R ABI will be the first GOES imaging instrument providing observations in both the visible and the near infrared spectral bands. Therefore.
SCIAMACHY TOA Reflectance Correction Effects on Aerosol Optical Depth Retrieval W. Di Nicolantonio, A. Cacciari, S. Scarpanti, G. Ballista, E. Morisi,
SIMULATION OF ALBEDO AT A LANDSCAPE SCALE WITH THE D.A.R.T. MODEL AN EFFICIENT TOOL FOR EVALUATING COARSE SCALE SATELLITE PRODUCTS? Sylvie DUTHOIT*, Valérie.
A Temporal Filtering Algorithm to Reconstruct Daily Albedo Series Based on GLASS Albedo product Nanfeng Liu 1,2, Qiang Liu 1,2, Lizhao Wang 2, Jianguang.
H51A-01 Evaluation of Global and National LAI Estimates over Canada METHODOLOGY LAI INTERCOMPARISONS LEAF AREA INDEX JUNE 1997 LEAF AREA INDEX 1993 Baseline.
1/13 Development of high level biophysical products from the fusion of medium resolution sensors for regional to global applications: the CYCLOPES project.
Optical Properties in coastal waters change rapidly on very fine spatial scales. The existence of multiple ocean color systems provides a unique capability.
1  Vito 16/12/2004 VALERI Meeting 10 March 2005, INRA, Avignon, France A new VALERI validation site in North-Western China: The ‘Shandan’ grassland Four.
Contact © European Union, Monitoring the State of the Global Terrestrial Surfaces The state of vegetation is analysed using.
MOLLY E. BROWN, PHD NASA GODDARD GIMMS Group Challenges of AVHRR Vegetation Data for Real Time Applications.
Date of download: 5/29/2016 Copyright © 2016 SPIE. All rights reserved. Dome C, MODIS/AVHRR TOA reflectance time series for (a) band 1, (b) band 2, (c)
Science Review Panel Meeting Biosphere 2, Tucson, AZ - January 4-5, 2011 Vegetation Phenology and Vegetation Index Products from Multiple Long Term Satellite.
Surface Characterization 4th Annual Workshop on Hyperspectral Meteorological Science of UW MURI And Beyond Donovan Steutel Paul G. Lucey University of.
R. Santer and B. Berthelot Final meeting, ESRIN, Frascati, April 21, 2009 Calibration Test Sites Selection and Characterisation WP260 – Error analysis:
Estimation of surface characteristics over heterogeneous landscapes from medium resolution sensors. F. Baret 1, S. Garrigues 1, D. Allard 2, R. Faivre.
Ann Mari Fjæraa Philipp Schneider Tove Svendby
Gofamodimo Mashame*,a, Felicia Akinyemia
D e v e l o p m e n t o f t h e M N I R-S W I R a n d AA a t m o s p h e r I c c o r r e c t I o n a n d s u s p e n d e d s e d I m e n t c.
A Atmospheric Correction Update and ACIX Status
PLEIADES Lunar Observations Sophie Lachérade, Bertrand Fougnie
SADE Export Web Site Claire Tinel, Denis Blumstein, Patrice Henry - CNES Pascale Lafitte - CNES GSICS WG Meeting – Feb 2010 – Claire Tinel / CNES.
J. C. Stroeve, J. Box, F. Gao, S. Liang, A. Nolin, and C. Schaaf
PATMOS-x Reflectance Calibration and Reflectance Time-Series
Algorithm Theoretical Basis Document GlobAlbedo Aerosol Retrieval
Analysis Ready Data July 18, 2016 John Dwyer Leo Lymburner
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Study of Asian and Australian desert sites for sensor cross-calibration in the VPIR range Patrice Henry, Bertrand Fougnie, Sophie Lacherade, Philippe Gamet,
Meteorological Satellite Center Japan Meteorological Agency
Introduction of the SCIAMACHY SBAF web tool
Paulo Gonçalves1 Hugo Carrão2 André Pinheiro2 Mário Caetano2
Characterizing DCC as invariant calibration target
Atmospheric Correction Inter-comparison eXercise
Component decomposition of IASI measurements
Using dynamic aerosol optical properties from a chemical transport model (CTM) to retrieve aerosol optical depths from MODIS reflectances over land Fall.
Overview of the validation of active fire products
Strawman Plan for Inter-Calibration of Solar Channels
Studying the cloud radiative effect using a new, 35yr spanning dataset of cloud properties and radiative fluxes inferred from global satellite observations.
Presentation transcript:

Validation of CYCLOPES, MODIS & MERIS PRODUCTS M. Weiss, F. Baret, K. Pavageau, P. Bicheron, M. Huc, D. Béal, W.Wang 10/03/2005 NOV-3300-SL-2858

Objectives= to validate LAI, fAPAR, fCover Consistency between products (relative validation) ? Consistency with ground truth (absolute validation) ? Relative validation Inter-comparison Absolute Validation Good repartition in space (BELMANIP) Temporal monitoring (Weekly or decadal data) Few points Bad repartition in space Bad repartition in time Error quantification (rms) No error quantification Use the two ways to get « the best evaluation » 10/03/2005 NOV-3300-SL-2858

Problems associated with inter-comparison Product definition (effective LAI or true LAI, instantaneous fAPAR at satellite overpass….) Temporal composition : CYCLOPES = decade, MODIS= week The « Footprint » : the size of the two objects must be the same Geo-location : same geographic position (cartographic projection, sensor geo-location error, GPS measurement error,…) Sensor PSF : the measured signal for a given pixel correspond to the pixel itself + its environment Attenuating PSF + Geo location effect : Site size = 3kmx3km Footprint: CYCLOPES = UTM, WGS84 MERIS = lat/lon WGS84 10/03/2005 NOV-3300-SL-2858

MERIS & CYCLOPES product definition LAI = effective LAI fAPAR = instantaneous fAPAR at 10h00 10/03/2005 NOV-3300-SL-2858

(2 spatial resolution: 1km – 8km) Up to now: 2 versions available CYCLOPES PROJECT Final objectives: provide LAI, fAPAR, fCover products derived from the fusion of AVHRR, VGT, POLDER data from 1997 to 2003 (2 spatial resolution: 1km – 8km) Up to now: 2 versions available Version 1 = VGT data derived from already existing processing chains. BRDF normalization using Roujean’s model, use relationships between Roujean’s coefficients and biophysical variables Version 2 = algorithm based on neural nets calibrated on radiative transfer simulations using normalized TOC nadir reflectances (for LAI: + fAPAR as input) 10/03/2005 NOV-3300-SL-2858

MERIS PRODUCT DESCRIPTION Same philosophy (neural nets calibrated on radiative transfer simulations) except that Inputs are Top of Atmosphere reflectances + pressure + view & satellite angles No normalization: one LAI, fAPAR, fCover estimated at each date Up to now, no cloud filtering is applied to the data. Application of a manual filtering + smoothing using gaussian filtering 10/03/2005 NOV-3300-SL-2858

MODIS Product description LAI (sinusoidal projection) = collection 4 downloaded from EOS data gateway fAPAR (sinusoidal projection) = The fAPAR MODIS standard product (collection 4) re-processed by BU Relationship used for Intercomparison with MERIS Use of the MODIS re-projection tool (nearest neighbor resampling because of flags) to provide the products in : UTM/WGS84 (comparison with CYCLOPES) Plate Carrée (Lat/lon WGS84) (comparison with MERIS) 10/03/2005 NOV-3300-SL-2858

The used sites VALERI sites in 2003: Additional sites in 2003 AERONET+ VALERI (other years) Turco, Bolivia Barrax, Spain Fundulea, Romania Haouz, Morocco Hirsikangas,Finland Concepcion, Chile Larose, Canada AERONET: Banizoumbou, Bordeaux, Jabiru, Ouagadougou, Moldova, Fontainebleau VALERI : - Grasslands: Laprida, ZhangBei, Larzac - Shrublands: Gourma - Croplands :Avignon_Alpilles, Sud-Ouest, Romilly, Gilching - Forests :Counami, SierraCincua,AekLoba, Puechabon 10/03/2005 NOV-3300-SL-2858

LAI-fAPAR relationships - MGVI-LAI bad relationship Bad results for CYCLOPES V1 for low canopies Low scattering for CYCLOPES V2 -LAI higher for MODIS than other products 10/03/2005 NOV-3300-SL-2858

LAI,fAPAR cumulated distribution Good consistency for fAPAR Differences for low LAI & high LAIs 10/03/2005 NOV-3300-SL-2858

Comparison between products Comparison with CYCLOPES products (interpolation of MODIS data at CYCLOPES dates) – UTM/WGS84 projection. Europe & Africa sites Comparison with MERIS products (interpolation at MERIS dates) – lat/lon on WGS84. All sites fAPAR: Good consistency between CYCLOPES V2/MODIS, MODIS/MERIS LAI : more scattering. Higher LAI for CYC ENF, higher LAI for MOD DBF HIGH values for MOD crops 10/03/2005 NOV-3300-SL-2858

Comparison with VALERI maps CYC_V1 CYC_V2 fAPAR: Maybe problems with CAN-EYE when understorey LAI : MERIS underestimates ENF although MODIS overestimates 10/03/2005 NOV-3300-SL-2858

Temporal evolution for some VALERI sites 10/03/2005 NOV-3300-SL-2858

10/03/2005 NOV-3300-SL-2858

10/03/2005 NOV-3300-SL-2858

10/03/2005 NOV-3300-SL-2858

10/03/2005 NOV-3300-SL-2858

10/03/2005 NOV-3300-SL-2858

10/03/2005 NOV-3300-SL-2858

Conclusions Encouraging results, especially for fAPAR (computation of fAPAR in VALERI when understorey?) More inter-comparison (BELMANIP) & validation (temporal monitoring of validation sites) are required to better understand the weaknesses of the different algorithms 10/03/2005 NOV-3300-SL-2858