S. Baron on behalf of the TTC-PON team (E. Mendes, C. Soos, D

Slides:



Advertisements
Similar presentations
Burst-mode receivers for GPON and LRPON applications
Advertisements

MUSE XL-PON: General Concept and Approaches for Burst-Mode Receivers Emilio Hugues Salas University of Essex.
1 PIANO+ OTONES WP3 SIGNAL PROCESSING ALGORITHMS.
Optical Transceivers: Evaluation of Commercial Optical TRx Luis Amaral CERN – PH/ESE/BE – Opto 10/04/
E-link IP for FE ASICs VFAT3/GdSP ASIC design meeting 19/07/2011.
Ethernet over VDSL Technical Specifications. Agenda –Rate – Reach –Band Allocation –SNR and BER –PSD mask and Power Backoff Algorithm –Rate Limitation.
10Gb/s EPON FEC - Coding gain vs power budget Contributors names Sept 2006.
DASAN NETWORKS GPON Training
Power Budgeting in Distributed Systems.  Single transmitter signal distributed to two or more receivers via optical splitters Transmitter Receiver #1.
1 SUCCESS-DWA: A Highly Scalable and Cost-Effective Optical Access Network Speaker : Tse-Hsien Lin Teacher : Ho-Ting Wu Date :
Transceivers for Passive Optical Networks Spyridon Papadopoulos Supervisors: Dr Jan Troska (CERN), Prof Izzat Darwazeh, Dr John Mitchell (UCL)
ALICE and LHCb meeting TTC-PON History & Status Csaba SOOS, Dimitris KOLOTOUROS, Vidak VUJICIC, Sophie BARON 11/06/2015S. Baron, CERN PH/ESE1.
Mahesh Wagh Intel Corporation Member, PCIe Protocol Workgroup.
SRS-DTC Links WG5 RD51 Miniweek Alfonso Tarazona Martínez, CERN PH-AID-DT.
U niversity of S cience and T echnology of C hina Design for Distributed Scheme of WCDA Readout Electronics CAO Zhe University of Science and Technology.
SJD/TAB1 EVLA Fiber Selection Critical Design Review December 5, 2001.
FiWi Integrated Fiber-Wireless Access Networks
P. Jansweijer Nikhef Amsterdam Electronics- Technology October 15, 20091VLVnT-09 Athens Measuring propagation delay over a coded serial communication channel.
SODA: Synchronization Of Data Acquisition I.Konorov  Requirements  Architecture  System components  Performance  Conclusions and outlook PANDA FE-DAQ.
Graduate Engineer Lunch & Learn Edmonton, 2011 The Evolution of FTTH Technology Jonathan Hnit, P.Eng August 25 th, 2011.
CERN Real Time conference, Montreal May 18 – 23, 2003 Richard Jacobsson 1 Driving the LHCb Front-End Readout TFC Team: Arek Chlopik, IPJ, Poland Zbigniew.
GBT, an integrated solution for data transmission and TTC distribution in the SLHC Perugia, 17 May 2006 A. Marchioro, P. Moreira, G. Papotti CERN PH-MIC.
Evaluation of Multi-Gbps Optical Transceivers for Use in Future HEP Experiments Luis Amaral CERN – PH/ESE/BE – Opto 16/09/2008.
A Network Architecture for Bidirectional Data Transfer in High- Energy Physics Experiments Using Electroabsorption Modulators PAPADOPOULOS, S. 1,2, DARWAZEH,
SONET is used as a WAN. ANSI standard – SONET ITU-T standard – SDH Both are fundamentally similar and compatible.
FPGA firmware of DC5 FEE. Outline List of issue Data loss issue Command error issue (DCM to FEM) Command lost issue (PC with USB connection to GANDALF)
Transfering Trigger Data to USA15 V. Polychonakos, BNL.
The Design of power saving mechanisms in Ethernet Passive Optical Networks Yun-Ting Chiang Advisor: Prof Dr. Ho-Ting Wu
GBT SCA overview Slide 1-5 Work status Slide 6-10 Shuaib Ahmad Khan.
PON for TTC Sophie BARON, PH/ESEACES PON FOR TTC An investigation for TTC upgrade Passive Optical Network for TTC Sophie Baron, ACES2011.
A Super-TFC for a Super-LHCb (II) 1. S-TFC on xTCA – Mapping TFC on Marseille hardware 2. ECS+TFC relay in FE Interface 3. Protocol and commands for FE/BE.
Sophie Baron – TTC upgrade – PON concept – ALICE - 29 October 2012 TTC upgrade The TTC-PON project 1.
FELIX Design FELIX Design Upgrades of detector readout meeting 9 June 2014 Lorne Levinson, for the FELIX group Upgrades of detector readout meeting, 9.
Firmware Overview and Status Erno DAVID Wigner Research Center for Physics (HU) 26 January, 2016.
Application Note Fiber Connectivity Riedel solutions for broadcast applications 1 Application Note - Fiber Connectivity.
GBT protocol implementation on Xilinx FPGAs Csaba SOOS PH-ESE-BE-OT.
Status and Plans for Xilinx Development
Design of OCDMA Demonstrator Yun Ping Yang, Alireza Hodjat, Herwin Chan, Eric Chen, Josh Conway.
S. Baron, E. Mendes on behalf of the TTC-PON team (S. Baron, D. Kolotouros, E. Mendes, C. Soos) EP-ESE Seminar 31 May 2016 Recent Developments in the System.
1 Kyung Hee University Chapter 13 Wired LANs: Ethernet.
Implementing the GBT data transmission protocol in FPGAs
P. Jansweijer Nikhef Amsterdam Electronics- Technology Amsterdam July 5-6, 2010KM3NeT: General WPF/L meeting 1 Measuring time offset over a bidirectional.
Some thoughs about trigger/DAQ … Dominique Breton (C.Beigbeder, G.Dubois-Felsmann, S.Luitz) SuperB meeting – La Biodola – June 2008.
A DWDM link for Real-Time data acquisition systems
The Data Handling Hybrid
TTC-PON An upgrade proposal for off-detector TTC
FF-LYNX Overview FF-LYNX Interfaces FF-LYNX Protocol
A Network Architecture for Bidirectional Data Transfer in High-Energy Physics Experiments Using Electroabsorption Modulators PAPADOPOULOS, S. 1 ,2 , DARWAZEH,
Simplex PMD Glen Kramer Chair, IEEE P802.3av “10GEPON” Task Force
96-channel, 10-bit, 20 MSPS ADC board with Gb Ethernet optical output
Erno DAVID, Tivadar KISS Wigner Research Center for Physics (HU)
Javier Serrano CERN AB-CO-HT 29 February 2008
TELL1 A common data acquisition board for LHCb
The Control of Phase and Latency in the Xilinx Transceivers
GBT-FPGA Tutorial Tips & Tricks 27/06/2016
TTC system for FP420 reference timing?
Contributors and Support: Frank Effenberger, Huawei
Chapter 4: Digital Transmission
PON Extra Material.
On Behalf of the GBT Project Collaboration
Data Link Issues Relates to Lab 2.
Impact of Serializer/Deserializer Architecture on ETD High-Speed Links
Simplex PMD Glen Kramer Chair, IEEE P802.3av “10GEPON” Task Force
Bunch Tiltmeter Steve Smith SLAC Snowmass July 16, 2001 Update date
Modulation Modulation => Converts from digital to analog signal.
UWB Receiver Algorithm
Measuring propagation delay over a coded serial communication channel using FPGAs P.P.M. Jansweijer, H.Z. Peek October 15, 2009 VLVnT-09 Athens.
Yun-Ting Chiang Advisor: Prof Dr. Ho-Ting Wu
9-July-2007 Project: IEEE P Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [DecaWave Proposal for TG3c Alternative PHY]
TTC setup at MSU 6U VME-64 TTC Crate: TTC clock signal is
Presentation transcript:

S. Baron on behalf of the TTC-PON team (E. Mendes, C. Soos, D S. Baron on behalf of the TTC-PON team (E. Mendes, C. Soos, D. Kolotouros) ACES 2016

sophie.baron@cern.ch - ACES 2016 Outline PON for TTC: introduction and basics Downstream Path Upstream Path System Performance Overview Next steps 08/03/2016 sophie.baron@cern.ch - ACES 2016

Introduction to the TTC-PON system Current TTC (Timing, Trigger and Control) Unidirectional system 1:32 split ratio 1310nm 40Mb/s per channel Busy/throttle on a separate link 08/03/2016 sophie.baron@cern.ch - ACES 2016

Introduction to the TTC-PON system Introduction to PONs (Passive Optical Networks) Technology used in FTTH Bidirectional Two wavelengths (1/direction) Downstream (OLT->ONU) High bandwidth Upstream (ONU->OLT) TDMA (shared bandwidth) 08/03/2016 sophie.baron@cern.ch - ACES 2016

Introduction to the TTC-PON system 1:64 08/03/2016 sophie.baron@cern.ch - ACES 2016

Introduction to the TTC-PON system OLT →ONUs Broadcast and continuous serial stream LHC Bunch Clock (BC) synchronous ONUs →OLT Time Domain Multiplexing between ONUs Self arbitrated Shared bandwidth, lower line rate LHC Bunch Clock (BC) synchronous (BC 08/03/2016 sophie.baron@cern.ch - ACES 2016

Main figures of merit of TTC-PON System High Split ratio/Power Budget Low Level of customization Low sensitivity to temperature Downstream Fixed & Low Trigger latency High Bandwidth Low Clock jitter Upstream Low Busy latency High Dynamic range High Payload 08/03/2016 sophie.baron@cern.ch - ACES 2016

TTC-PON Project Evolution 2010 TTC PON proof of concept (Downstream 1G EPON) 2013 (Full 1G EPON) TTC PON 2014 (Full 10G EPON) TTC PON (Full 10G GPON TTC PON 33ns burst) 2014-15 2015-16 (Full 10G GPON TTC PON 125ns burst) 1.2G, First bidirectional proof of concept, high latency 9.6G, low latency down, higher latency up in GPON std 11.2G, low latency down, line rate not optimal, out of EPON std 9.6G, low latency down & up, out of GPON std (link layer and hardware) Very first study, focused on downstream path 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 TTC-PON 2016 1577nm 9.6Gbps 1270nm 2.4Gbps 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 ONU1 OLT ONU2 ONU3 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Outline PON for TTC: introduction and basics Downstream Path Upstream Path System Performance Overview Next steps 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Downstream Path Principle and Bandwidth Performance Power Budget and split ratio Jitter map Latency PON-GBT bridge 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Downstream Protocol OLT →ONUs Broadcast LHC Bunch Clock (BC) synchronous 9.6Gbps serial link 8B10B encoded, K28(.1, .5) comma Full Payload: 24bytes (200bits) per BC including trigger and control. Slow Control field: 3 bytes User Data Field: 20 bytes (160 bits) Bunch clock period (25ns) 10G PON-TTC K28 Ad C1 C2 D 24 bytes Current TTC 1 Channel A (Trigger field, 1 bit) Channel B (Control, 1 bit) 2 bits 08/03/2016 sophie.baron@cern.ch - ACES 2016

Downstream BER & Split Ratio Split Ratio & Power Budget Upstream 1 splitters 2 splitters Measured Minimum Tx Power (OMA) 3.68 dBm Minimum Receiver Sensitivity (OMA) -19.2 dBm Power Budget 22.88 dB Splitters (1:64) -20.5 dB -20.7 dB Connectors - 1 dB -2 dB Fiber length -0.05 dB Margin 1.33 dB 0.33 dB 4 dB Target BER : 10-12 Confidence Level: 0.95 A FEC could help gaining some margin 08/03/2016 sophie.baron@cern.ch - ACES 2016

Downstream Jitter Map – PON only KC705 Kintex 7 240MHz OLT gen - CG635 1:8 1577nm 9.6Gbps 1270nm 2.4Gbps PLL -Si5338 / PLL-Si5345 ONU 40MHz KC705 Kintex 7 120MHz   phase-noise analyzer 08/03/2016 sophie.baron@cern.ch - ACES 2016

Downstream Jitter Map – PON + GBT 08/03/2016 sophie.baron@cern.ch - ACES 2016

Downstream Jitter Map – PON + GBT 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Downstream Latency Fixed & deterministic 86ns (Active components only) Comparable to current TTC (even a bit lower) Might go down to 82ns Downstream latency =A + B + C + D = 86ns 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 PON-GBT bridge …Firsts tests on a Kintex7… GBT-FPGA FPGA PON-ONU Simple Data check for the moment. BER and fixed latency tests not yet done… 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Outline PON for TTC: introduction and basics Downstream Path Upstream Path System Performance Overview Next steps 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Path Principle and Bursts composition Challenges Synchronizing all ONUs Recovering data burst by burst Fine alignment of bursts Performance BER & Power Budget Dynamic Range Temperature Latency 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Principle Time Domain Multiplexing… …automatically arbitrated Comma/Addr Payload Preamble Gap 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Principle Dealing with short gaps and high dynamic range…. … using a GPON standard feature ONU1 ONU2 KC705 Kintex 7 OLT Rx_Reset 10G GPON specs: Minimum Gap: 25ns Minimum Reset Pulse Width: 25ns Maximum Setting time: 52ns (=minimum preamble length) 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Principle Burst composition… Comma /Addr Payload 25ns 58.3ns 8.3ns 33.3ns Gap 25ns Preamble 58.3ns Comma+Addr 8.3ns Payload 33.3ns (64b)* Total Gap+Burst 125ns Latency (64 onu’s) 64x125ns=8us Average data-rate 8Mbps (64b/8us) Busy waiting time *or 25ns if we decide to extend the preamble 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges Link synchronization => Clock recovery and re-use for transmit path (@ONU level) Phase changing between bursts → classical CDR is not an option => Oversampling scheme (@ OLT RX level) TDM arbitration (token is automatically passed between ONUs) => Requires a calibration procedure 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges Link synchronization @ ONU … Clock recovery and re-use for upstream transmission 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges …Oversampling scheme @ OLT Principle x4-oversampling 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges Oversampling scheme @ OLT… Architecture BlindOverSampler (BOS) 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges TDM arbitration & Calibration… L l Have this … OLT_RX Avoid this … OLT_RX Using specific a common t0 reference + a fine calibration procedure 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Performance BER & Power Budget …1:64 with a lot of margin Upstream 1 Splitter 2 Splitters Measured Minimum Tx Power 2.79 dBm Minimum Receiver Sensitivity -22 dBm -24 dBm Power Budget 24.79 dB Splitters (1:64) -20.5 dB -20.7 dB -20.5 Connectors -1 dB -2 dB -2 Fiber length -0.05 -0.05 dB Margin 3.04 dB 2.04 dB 6 dB 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Performance Dynamic Range… …no penalty up to 12dB !! ONU2 ONU1 DR 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Latency… Bounded Latency: 200+8ns (depending on the phase) (Active components only) What really matters: Waiting time of 8us per ONU (for 64 ONUs) ONU OLT OLT Upstream latency =A + B + C + D = 200 +8ns 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Outline PON for TTC: introduction and basics Downstream Path Upstream Path System Performance Overview Next steps 08/03/2016 sophie.baron@cern.ch - ACES 2016

System Performance Overview 1:64 System: Fully scalable & flexible Split ratio: 1:64 maximum Dynamic Range: 12 dB (!) Immune to temperature variations Downstream: Bunch Clock Synchronous 9.6Gbps, 6.4Gbps User Bandwidth maximum Latency: ~86ns, no additional Jitter (using an external PLL) Upstream 2.4Gbps, bandwidth shared between max 64 ONUs Waiting Time per ONU: Nx125ns, with N<=64. 8us for 64, 4us for 32. Payload: 64 bits per ONU every cycle of Nx125ns. 08/03/2016 sophie.baron@cern.ch - ACES 2016

System Performance Overview Resource & Costing… Resources (of a middle range Kintex 7): OLT =~ 1% Slices LUT ONU =~0.5% Slices LUT More details in spare slide Cost SFP+ OLT: 965 USD XFP+ OLT: 1075 USD SFP+ ONU: 258 USD 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Next steps for TTC-PON Finalise our prototype Improve calibration procedure Finalise Protocol Validate the PON-GBT bridge and the fixed & deterministic latency down to the GBTx Based on Kintex 7 Qualify the Si5344 PLL Propose packaged IPs for both OLT and ONU and a reference design TTC-PON FMC under test Diversify our sources for PON device Phase 1 (LS2): targeting ALICE & LHCb upgrades (Arria 10) TTC PON under evaluation by ALICE for Phase-I upgrades On going tests with the PCIe40 – close collaboration with LHCb and ALICE Prepare production (device procurement) Phase 2 (LS3): proposal for ATLAS & CMS upgrades Burst Mode CDR in Kintex Ultrascale New PON standards evaluation : Symmetrical 10G GPON? Higher power OLTs? 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 THANK YOU 08/03/2016 sophie.baron@cern.ch - ACES 2016

Optical Modulation Amplitude & Extinction Ratio 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges Oversampling scheme @ OLT… 08/03/2016 10/02/2016 E. Mendes sophie.baron@cern.ch - ACES 2016 14

sophie.baron@cern.ch - ACES 2016 Upstream Challenges Oversampling scheme @ OLT… Architecture BlindOverSampler (BOS) 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Upstream Challenges TDM arbitration & Calibration… Suppose that we have a 7 time units burst length (6 u. burst + 1u. gap) L L From OLT – broadcast a reset signal (K28.1) every T units (T=n_onu * burst_length; Here T=21u.) OLT_TX … ONU1_RX cntr rst ONU2_RX cntr rst ONU3_RX cntr rst … OLT_RX *arbitrary units for illustration 6u. 1u. 08/03/2016 sophie.baron@cern.ch - ACES 2016

sophie.baron@cern.ch - ACES 2016 Calibration Concept L Principle The procedure is arbitrated by the master (OLT) OLT measures the roundtrip time for each ONU: OLT sends a command: ONU_x enters in calibration_mode / all the others disable transmission When a onu is in calibration_mode, it sends data in a continuous way and acts as a comma-mirror ONU_x offset is compensated depending in the measured roundtrip L+∆L roundtrip_onu1 ONU_x K28.5 Addr K28.1 OLT_K28.1 08/03/2016 10/02/2016 sophie.baron@cern.ch - ACES 2016 E. Mendes 18

sophie.baron@cern.ch - ACES 2016 Calibration Concept First proof-of-concept implemented (+- 2.1ns) First validation L1 L2+∆L ∆ideal position (ns) 08/03/2016 10/02/2016 E. Mendes sophie.baron@cern.ch - ACES 2016 19

sophie.baron@cern.ch - ACES 2016 Calibration Concept Roundtrip measurement coarse-counter (resolution 8.33 ns) Counter that counts the time difference between the transmitted K28.1 and the received K28.1 word_aligner position (resolution 417 ps) Linear relation (mod 8.33ns) between word aligner position and latency Delimiter Data Pos + 3 x 417 ps Delimiter Data Pos 08/03/2016 10/02/2016 sophie.baron@cern.ch - ACES 2016 E. Mendes

TTC PON 2014 vs 2016 CBM33 (2014-15) CBM125 (2015-16) Gap+Preamble   CBM33 (2014-15) CBM125 (2015-16) Gap+Preamble 16.6ns 83.3 ns (datasheet = 77.2ns) Comma+Addr 8.3ns Payload 8.3ns (16b) 33.3ns (64b) Latency (64 onu’s) 2.1us 8us Average data-rate 7.6Mbps (16b/2.1us) 8Mbps (64b/8us) APC Modified Normal (Er≈5.4dB) Dynamic Range ~ 1.0dB No penalty for 6dB spec Temperature Huge impact from 45°C Tested up to 55°C – no impact Split Ratio 1:64 08/03/2016 sophie.baron@cern.ch - ACES 2016

OLT and ONU resource utilisation 08/03/2016 sophie.baron@cern.ch - ACES 2016