CH3I VMI-REMPI data and analysis:

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

I 2 fs REMPI 1) Energetics / excitation calculations....slide 2 2) Absorption spectrum slides 3-6 3)REMPI spectrum slide.
HCl,  =0, H 3 7Cl and H35Cl analysis. agust,www,.....Sept10/PPT aak.ppt agust,heima,...Sept10/XLS ak.xls agust,heima,...Sept10/Look for J ak.pxp.
Comparison of E(1), V(m+8), H(0) and V(m+7) VMI data: 1 color exp: KER spectra, 1color exp.……………………..…………..2-5 Beta2 vs J´,1 color exp.…………………………………….6-10.
CH3Br, Energy for CH3Br ->->-> CH3 + Br
Spectroscopy The Light Spectrum. Vibrational Spectroscopy D(t) r(t) Band structure The higher the BO: i) the deeper the Well, ii) the wider the spacing.
CH3Br, Relative ion signals (I(M + )/I(CH 3 + )) vs Rydberg states agust,www,....Nov09/PPT ak.ppt agust,heima,...CH3Br-Overall +mass km ak.pxp.
CH2Br2: 1) Absorption 2) REMPI scans: overview (slides 12-15) 3) C+ REMPI vs absorption spectrum agust,www,....ch2br2/PPT ak.ppt agust,heima,...CH2Br2/PXP ak.pxp.
Pnt I rel AK: ; agust,heima/rannsóknir/REMPI/HF/fra Wang/HF test skimmer pxp & HF t skimmer ppt Fig. 1.
II. Multi- photon excitation / ionization processes
Spectroscopy Molecules move Movement can be monitored with electromagnetic radiation, e.g. light.
HBr, F 1  2, v´=1
HCl agust,heima,...Sept10/aHCl(3+1)j3S(0)Calc ak.pxp (JMS paper) agust,www,....Sept10/PPT ak.ppt agust,heima,...Sept10/HCl(3+1)j3Sigma(0) Calc ak.pxp.
2 AB AB + + e AB* AB +* + e n h or n 1 h 1 + n 2 h 2 + : -absorption 1h  n h  -ionization Energy.
CH 3 Br: & Literature survey on Direct ion-pair state excitation vs Ion pair fomation via initial Rydberg state excitation (Rydberg doorway.
CH 2 Br 2 agust,www,...rempi/ch2br2/PPT ak.ppt agust,heima,....CH2Br2/Long, Sept-11/Merged CH2Br2 spectra jl ak.pxp.
CF3Br agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp agust,heima,....CF3Br/Sept10/PXP ks/Br 1D-REMPImW ks ak.pxp.
1 CH3Br, C, C* and C** dissociation formation channels vs C+ spectra Explanation for enhanced C+ Rydberg state spectra in the cm-1.
P Fig. 6-1, p. 193 Fig. 6-2, p. 193 Fig. 6-3, p. 195.
Fig. 1. Fig. 2 Fig. 3 Fig. 4 Fig. 5 Comments: Judging from the unnormalized spectra (figs 4-5) C +, CH + and C 2 + (possibly also slight H + (?))
CH3Br agust,www,...Sept09/PPt ak.ppt agust,heima,....Sept09/CH3BR avhwak.pxp agust,heima,....Sept09/CH3BR bvhwak.pxp.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
Pump-Probe Photoionization & Mass Spectroscopy of Pentamethylcyclopentadiene Fedor Rudakov Peter Weber Molecular Spectroscopy June 21, 2007.
HCl, negative ion detections 1hv ion-pair spectra (slides 3-4) Loock´s prediction about H+ + Cl- formation channels(slides 5-6) Energetics vs Dye for V(v´= )
Ionization Energy Measurements and Spectroscopy of HfO and HfO+
Wbt1 Chapter 10. REMPI, ZEKE, and MATI Spectroscopies Resonance-enhanced multiphoton ionization (REMPI) spectroscopy involves more than one photons in.
Femtosecond Laser Spectroscopy of C 60 Nieuwegein, The Netherlands August 21, 2001 Eleanor Campbell, Göteborg University & Chalmers, Sweden R.D. Levine,
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
HBr, E(0), KERs and relative intensities revisited: Content:pages: KER spectra and „channel.
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
HCl, E(v´=2) agust,www,…..hcl/June11/PPT ak.ppt agust,heima,…HCl/June11/HCl E2 spectra jl.pxp agust,heima,…HCl/June11/HCl E2 spectra jlaka.pxp.
Eirík´s project(?) CH 3 I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
HBr; Updated: Imaging experiments in Crete Labtop..C:……/Crete/HBr/PPT aka.pptx &
Dispersed fluorescence studies of jet-cooled HCF and DCF: Vibrational Structure of the X 1 A state.
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
2008 International Symposium on Molecular Spectroscopy Anion Photoelectron Spectra of CHX 2 - and CX 2 - Properties of the Corresponding Neutrals Scott.
HBr Energetics agust,www,....hbr/PPT ak.ppt agust, heima,...HBr/XLS ak.xls.
Heavy Atom Vibrational Modes and Low-Energy Vibrational Autodetachment in Nitromethane Anions Michael C. Thompson, Joshua H. Baraban, Devin A. Matthews,
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
Resonance-enhanced Photoassociative Formation of Ground-state Rb 2 and Spectroscopy of Mixed-Character Excited States H.K. Pechkis, D. Wang, Y. Huang,
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
( ak.ppt )
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt
HBr, Angular distributions for V(m+i), i = 4-10; J´
Xiao Min Tong and Chii Dong Lin
Updated (p:15-16, refs. & p:50-51)
CH3I summary This file includes some ideas about dissociation of
DCl (HCl) Heavy Rydberg states work Exploring V state spectra
Resolution of Transient States of Nitrile Anions via Photodissociation Action Spectroscopy; Our Progress to Date The 2 traces show resonant Cu atomic.
H(0), one-color, VMI and slicing images
HBr, 3S-, J´= 8 & V(m+9) Updated:
2 color VMI exp. CH3(X;v1v2v3v4) detection; hi
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
HBr Mass resolved REMPI and Imaging REMPI.
HBr, dep. Calc. E0,Vm+4,Vm+5
CH3I summary This file includes some ideas about dissociation of
HBr 6pp.. vs. V(m+17) state interactions.
CH3I VMI-REMPI data and analysis:
1hv spectrum corrected/shifted
HI Absorption REMPI references (slide 9) Energetics (slides 10-)
CH3Br Negative particle detections; Electrons /PES:
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
CF3Br agust,www,....cf3br/PPT ak.ppt agust,heima,....Sept10/XLS ak.xls
Bgr nLASER/ cm
B-outer-well- region “Jump effect”??? WHY?. B-outer-well- region “Jump effect”??? WHY?
Presentation transcript:

CH3I VMI-REMPI data and analysis: Content pages: Plan-table and fig.………………………………………………………………………… 2-3 Figs. From Pavle:………………………………………………………………………… 4-9 CH3+, KERs, images and threshold predictions:………………………….. 10-24 CH2+, KERs, and threshold predictions:………………………….. 26-28 I+, KERs, and threshold predictions:……………………………… 29-36 e- PES´s, and threshold predictions…….......................……. 37-55 Conclusive remarks:……………………………………………………………………….. 56 From the literature(energetics of CH3)…………………………………………. 57-60 Energetics:…………………………………………………………………………………… 61-65 Updated: 171103

VMI-REMPI experimental plan: CH3I: no. 2hv/ eV 2hv/cm-1 1hv/cm-1 l / nm(1hv) Rydberg state converging to ref: Comment Predicted / 6.777 54660.17 27330.08540 365.897136 6s(0,..) 2E1/2 Table 4* 1 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ Table 5* Not accessable by MOPO; use dye laser 2 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 Try use MOPO 3 7.36 59362.38 29681.19062 336.9137083 6p(3/2) +v3 Table 6 * 4a 4b 7.381 59531.76 29765.8788 (?) Unassigned peak, relatively strong (?) 4c 5 7.402 59701.13 29850.56698 335.0020121 6p(3/2) +nv6 6 7.642 61636.86 30818.43189 324.4811428 6p(3/2) +nv1 7 7.82 63072.53 31536.26504 317.0952549 5d(0,…) # 8 7.996 64492.07 32246.03264 310.1156695 6p(0,…) # 9 8.022 64701.77 32350.88467 309.1105576 7s(0,…) # 10 8.299 66935.92 33467.96209 298.7932152 7s(3/2) +nv2 Table 6* 11 8.429 67984.44 33992.22225 294.184944 7p(0,…) # (Try use MOPO); used exc./dye 12 8.652 69783.06 34891.53006 286.6025073 i.e. 6 fundamental (0,…) bands (#); 5 vibrational bands; 1 uncertain band(?) / three bands for convergence to 2E1/2 ($) *ref: https://notendur.hi.is/agust/rannsoknir/papers/CH3X/cp331-232-07.pdf ; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

(4) (2) (12) (6) (11) (10) (0) (7) (3) (8) (9) (1)

CH3+ KERs… and predictions I+ KERs……… and predictions Figs from Pavle: CH3+ KERs… and predictions I+ KERs……… and predictions PES´s………… and predictions See : https://notendur.hi.is/agust/rannsoknir/Crete17/PPT-170926PG.ppt 

KER for CH3+ from Pavle; Fig. from OriginPro 8.5 eV 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 from Pavle; Fig. from OriginPro 8.5 eV

26-09-2017, CH3I at 286.600 nm, CH3

20-09-2017, CH3I at 358.835 nm, I fragments, irises low

NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 Ideas from Pavle; Fig. from OriginPro 8.5 Also in: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions NB: thresholds obtained for D(CH3-I)=2.476 eV (PC; CRC) eV

20-09-2017, CH3I at 358.835 nm, photoelectrons From PC..…CH3I results.ppt in 20170920

CH3+ KERs, images and threshold predictions:

eV CH3+ KERs, Off resonance resonance resonance 170928 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170920 resonance resonance eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay18,Gr19 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2 MOPO 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170929 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 exc./dye eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay19,Gr20 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ KERs, For E(M+,eV) = 3.5e-5 x (pix)2 171003; (4a); 336.357(exp.) 171019; (4a); 336.357(exp.) less space charge effect eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay31,Gr34 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ KERs, Abel converted; file: „abel_speed“ 170925 (11) 8.429 67984.44 33992.22225 294.184944 7p(0,…) # 2E3/2 Abel converted; file: „abel_speed“ NOT Abel converted; file: „x_speed“ 171020 (11) 294.184944 7p(0,…) # 2E3/2 eV For E(M+,eV) = 3.50e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay12,Gr13 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra

eV CH3+ Prediction calc: polarizer not IN Possibly: (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ polarizer not IN Prediction calc: Possibly: CH3I + 1hvpd -> CH3I* CH3I* -> CH3#(..vi=1..)+ I; CH3#(..vi=1..)+ 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI CH3#(..vi=1..): vibrationally excited NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I* CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI 0.897144 eV Threshold for CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (0,0,..+ I CH3 (0,..) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI 1.74001eV Subscript notations: pd = photodissociation i= ionization DE = 0.33 eV / 2662 cm-1(?) eV For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay7,Gr7 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions

eV CH3+ KERs, updated: 170926 Off resonance see also slide 6 286.6 (exp.) 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ 286.5855(exp.) see also slide 6 above (PG) for predictions eV For E(M+,eV) = 3.50e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay13,Gr15 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I* 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.476 eV (PC;CRC) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay2,Gr3 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra & Predictions

eV CH3+ KERs, Thresholds: i=2(3p2A2) i=1(3s2A1´ CH3**(i) + I* 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 CH3**(i) + I* NB: thresholds obtained for D(CH3-I)=2.38 eV (AK) CH3**(i) + I i=2(3p2A2) i=4(3d2A1´) i=3(3d2E) i=1(3s2A1´ CH3**(i) + I* i=1(3s2A1´ i=2(3p2A2) CH3**(i) + I i=1(3s2A1´ eV For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay2,Gr3 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheets: Ry spectra & Predictions

NB: The polarizer was not inserted in CH3+ images: Ry(2), 170919(170920); 339.467 nm(exp.) <= x1_10fl (RAW file) Ry(12), 170921; 286.5885 nm(exp.) <= x1_5fl (RAW file) Ry(1), 170920; 358.835 nm(exp.) <= x1_5fl (RAW file) NB: The polarizer was not inserted in the 170921 exp., hence, the angul. distrib. is invalid Rings might be because of 1hvpd channel(?)i.e.:

eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 NO polarizer in 170921; (12) 286.6025073 7s(0,…) # 2E1/2 $ 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ eV Virtually no difference https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay6,Gr8 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7,8 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV CH3+ KERs, : Virtually no difference 170920 (1) 359.062394 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171011; (9c); 310.1525(exp.) 171020 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ eV Virtually no difference https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay6,Gr8 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7,8,6,9c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

CH3+ KERs Comparison of shifted spectra: D(1hv) comparison Likely channels………………………. 22 D(3hv) comparison

D1hv / eV CH3+ KERs, Common thresholds for CH3I+1hv -> CH3 (X,v1v2v3v4)+I/I*: NO FITS! 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay26,Gr26 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

D1hv / eV Common thresholds for CH3+ KERs, CH3I+(3/2,1/2)+1hvpd -> CH3++ I/I*: CH3I+(3/2); I* CH3I+(1/2); I* CH3I+(3/2); I CH3I+(1/2); I interpretation Likely 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171005; (7); 317.120(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ Virtually no difference D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay28,Gr28 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c,7 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

D3hv / eV CH3+ KERs, Common thresholds for CH3I+3hv -> CH3 **(Ry,0000)+I/I*: CH3 **(3p2A2) CH3 **(3p2A2) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 Could be vibrational structure In the CH3**(3p2A2) + I Channel (?); however peaks do not match and PES spectra suggest that CH3** formation is not important. See slide 43 171003; (4a); 336.357(exp.) 171003; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ Virtually no difference D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay27,Gr27 For E(M+,eV) = 3.41407e-5 x (pix)2for (1),(2) and 170921 (12) For E(M+,eV) = 3.50e-5 x (pix)2 for 170922 (12) and (11), (3),(4a),4b,4c https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra; Predictions-short

CH2+ KERs:

eV CH2+ KERs, For E(M+,eV) = 3.41407e-5 x (pix)2 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay3,Gr4 For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV CH2+ KERs, Z: Space charge NO Space charge Z: See PG PPT file on 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 171019 (1) 359.062394 6s (1/2) +v2 2E1/2 $ See PG PPT file on Images and KERs the KERs don´t seem to agree(?) 170929 (2) 339.444(exp.) 6p (0…) # 2E3/2 171013 (2) 339.467(exp.) 6p (0…) # 2E3/2 eV (1): For E(M+,eV) = 3.5e-5 x (pix)2 & 3.41407e-5 x (pix)2 (2):For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay3,Gr4 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

I+ KERS and threshold predictions:

eV iris low I+ KERs, iris open Very high energy I+: (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ iris low Very high energy I+: Prediction calc. for CH3 + I/I* formation after 2hv, 3hv and 4hv could not predict these! See: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay4,Gr5 For E(M+,eV) = 3.41407e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV iris low I+ KERs, updated: 170929 Off resonance iris open (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170928 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ iris low iris open eV For E(M+,eV) = 3.50e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay16,Gr17 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV I+ KERs, updated: 170926 Off resonance 286.6 (exp.) 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ Off resonance 286.5855(exp.) eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay14,Gr14 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV I+ KERs, identical For E(M+,eV) = 3.5e-5 x (pix)2 171010; (9c); 309.759(exp.) 171010; (9); 309.11(exp.) identical eV For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay30,Gr30 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV I+ KERs, Looks like I resonance(?) ? 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ (2) 339.4039 6p (0…) # 2E3/2 170919 I* ->-> I** OK; iodine resonance 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a); 336.357(exp.) 171004; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171010; (9); 309.11(exp.) 171020; (10); 298.788(exp.) eV 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay9,Gr10 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

I+ KERs Comparison of shifted spectra: D(3hv) comparison

D3hv / eV I+ KERs Comparison on a D3hv scale: Joined thresholds for : CH3I + 3hv -> CH3I# -> CH3 + I**; for the lowest energy I** 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ (2) 339.4039 6p (0…) # 2E3/2 170919 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171002 171004; (4b); 335.735 (exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay25,Gr25 For E(M+,eV) = 3.5e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

PES´s and Threshold predictions:

eV PES, CH3**+ 1hv -> CH3+ CH3(X) + 3hv -> CH3+(X(1/2)) 170920 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ CH3**(3p2A2)+ 1hv -> CH3+ CH3I(X) + 3hv -> CH3I+ I(1/2)+ 3hv -> I+ CH3**(3s2A1´)+ 2hv -> CH3+ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay11,Gr12 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions

eV PES, Off resonance For E(M+,eV) = 3.29e-5 x (pix)2 170928 (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ Off resonance (1) 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170920 eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay17,Gr18 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, (2) Abs. CH3I + 2hvr -> CH3I**(6p(0..),2E3/2) CH3I**(6p(0..),2E3/2) + hvpd -> CH3I# CH3I# -> CH3**((2);3p 2A2) + I/I* CH3**((2);3p 2A2) + hvi -> CH3+ + e- i.e. (2r + 1pd + 1i) REMPI NB: Threshold obtained for D(CH3-I) = 2.38 eV http://www.sciencedirect.com/science/article/pii/S0009261401008648 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 eV For E(e-,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay0,Gr1 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: „Ry spectra“ & „Predictions“

eV PES, (2) Abs. For E(e-,eV) = 3.29e-5 x (pix)2 MOPO (2) 7.306 170919 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170929 (2) 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 exc./dye eV For E(e-,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay20,Gr21 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: „Ry spectra“

eV PES, CH3**(3s2A1´) + 1hv -> CH3+ CH3**(3p2A2) + 1hv -> CH3+ I(3/2)+ 3hv -> I+ 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ Does not seem to fit any peaks Suggests that CH3** formation is not Important. See also slide 40 below. eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay10,Gr11 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions

eV PES, updated: 170926 Off resonance For E(M+,eV) = 3.29e-5 x (pix)2 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ 286.5855(exp.) eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay15,Gr16 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, : ? Look the same 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171003; (4a); 336.357 (?) 171004; (4b); 335.735 (exp.) 171004; (4c); 333.902(exp.) (??) ? Look the same 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 171020; (10); 298.788(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay5,Gr6 For E(M+,eV) = 3.29e-5 x (pix)2 for all except: For E(M+,eV) = 3.104e-5 x (pix)2 for (6), (10),(0) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, 171011; (9b); 309.11(exp.) 171011; (9a); 309.11(exp.) 171010; (9c); 309.759(exp.) 171006; (8); 310.1525(exp.) eV For E(e,eV) = 3.29e-5 x (pix)2 for (8): https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay29,Gr29 For E(e,eV) = 3.187e-5 x (pix)2 for (9,9a,9b,9c) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

eV PES, Thresholds: 1hv for: For E(M+,eV) = 3.29e-5 x (pix)2 CH3I(Ry(2)) + 1hv -> CH3I+(3/2,1/2)+e CH3I(Ry(1)) + 1hv -> CH3I+(3/2,1/2)+e (11): 2,5 & 3.1 eV (no fit) (12): 2.8 & 3.4 eV (no fit) -which equals that for 3hv excitation via The Rydb. States to for CH3I+(3/2) and CH3I+(1/2) 170920 1 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 170929 2 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170925 (11) 8.429 67984.44 33992.22225 294.184944 7p(0,…) # 2E3/2 170922; (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay21,Gr22 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

Comparison of shifted PES´s D(1hv) comparison D(3hv) comparison Discussion

Good matching of peaks => 1hv ionization processes PES, (on a D1hv scale) No good fits of thresholds: Ionization of CH3** not important Thresholds: 1hv Processes for CH3**(i;0..) + hv -> CH3+ + e i= 1-6 170920 1 6.906 55700.63 27850.31283 359.062394 6s (1/2) +v2 2E1/2 $ 2 7.306 58926.84 29463.42102 339.4039 6p (0…) # 2E3/2 170929 171002 (3) 7.36 59362.38 29681.19062 336.9137083 6p(3/2) +v3 2E3/2 170925 (11) 8.429 67984.44 33992.22225 294.184944 7p(0,…) # 2E3/2 12 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ 170922 Good matching of peaks => 1hv ionization processes are largely involved D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 For E(M+,eV) = 3.29e-5 x (pix)2 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

The various thresholds above are: No good fits of thresholds: Ionization of CH3** not important Let´s consider if the 1hv excitation channels are consistent with I** + 1hv -> I+ + e; I**: Rydberg states of iodine atoms NB: I+ ion signals are strong according to mass spectra. https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions-short

D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e: 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171004; (4b); 335.735 (exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ For E(M+,eV) = 3.29e-5 x (pix)2 D1hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV PES, (on a D1hv scale) Thresholds for I** + hv -> I+ + e: 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ (2) 339.4039 6p (0…) # 2E3/2 170919 : 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 171004; (4b); 335.735 (exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D1hv / eV For E(e,eV) = 3.29e-5 x (pix)2 Except: For E(e,eV) = 3.154e-5 x (pix)2 for (8) and (6) E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D1hv / eV Thresholds for PES, (on a D1hv scale) I** + hv -> I+ + e: I**(5s25p4(3P1)6s; J=3/2) + hv -> I+ + e  I**(5s25p4(3P2)6s; J =5/2 ) +hv-> I+ +e  I**(5s25p4(3P2)6s; J =3/2 ) +hv-> I+ +e  170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 : (3) 336.9137083 6p(3/2) +v3 2E3/2 171004; (4b); 335.735 (exp.) 171010; (6); 324.5015(exp.) 171005; (7); 317.120(exp.) 171006; (8); 310.1525(exp.) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D1hv / eV For E(M+,eV) = 3.29e-5 x (pix)2 Except: For E(M+,eV) = 3.154e-5 x (pix)2 for (8) and (6) https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay24,Gr24 https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D3hv / eV PES, (on a D3hv scale) : I+ <- I(3/2) I+ <- I(1/2): CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) I+ <- I(3/2) CH3I+(3/2;0..) <- CH3I(X;0..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) I+ <- I(1/2): CH3+ <- CH3(X) 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 : 171003; (4a) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra

D3hv / eV PES, (on a D3hv scale) 3hv processes : CH3I+(1/2;0,0,0,0,1,0) <- CH3I(X;0,..) CH3I+(1/2;0,0,0,0,0,0) <- CH3I(X;0,..) CH3I+(3/2;0,0,0,0,1,0) <- CH3I(X;,0,…) CH3I+(3/2;0..) <- CH3I(X;0..) I+ <- I(3/2) I+ <- I(1/2) CH3+ <- CH3(X) 171024; (0); 366.025(exp.) 170920 (1) 359.062394 6s (1/2) +v2 2E1/2 $ 170919 (2) 339.4039 6p (0…) # 2E3/2 : 171002 (3) 336.9137083 6p(3/2) +v3 2E3/2 171003; (4a) 170925 (11) 294.184944 7p(0,…) # 2E3/2 170922; (12) 286.6025073 7s(0,…) # 2E1/2 $ D3hv / eV https://notendur.hi.is/agust/rannsoknir/Crete17/PXP-170920.pxp ;Lay22,Gr23 For E(e,eV) = 3.29e-5 x (pix)2 Except E(e,eV) = 3.104e-5 x (pix)2 for (0) https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Ry spectra & Predictions-short

D(3hv) comparison / The various thresholds above are:   3.138 2.526735698 3.46938419 3.438 3.264546042 2.818 2.644546042 CH3+ formation from CH3(X): by 3hv: I+ formation from I(3/2): I+ formation from I(1/2):   CH3I+(3/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(3/2;0,0,0,0,1,0) formation from CH3I(X;,0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,0,0) formation from CH3I(X;0,0,0,0,0,0) by 3hv: CH3I+(1/2;0,0,0,0,1,0) formation from CH3I(X;0,0,0,0,0,0) by 3 hv: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Predictions-short

Preliminary conclusive remarks: https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: D(nhv) comp.

From the literature: CH3 energetics

X(CH3): Methyl Radical, CH3 Vibrational states of the ground To top X(CH3): Methyl Radical, CH3 Vibrational states of the ground electronic state http://webbook.nist.gov/cgi/cbook.cgi?ID=C2229074&Units=SI&Mask=800#Electronic-Spec

*3 *2 * CH3** *6 *5 *4 Methyl Radical, CH3 electronic state To top http://webbook.nist.gov/cgi/cbook.cgi?ID=C2229074&Units=SI&Mask=800#Electronic-Spec

http://webbook. nist. gov/cgi/cbook. cgi http://webbook.nist.gov/cgi/cbook.cgi?ID=C14531534&Units=SI&Mask=800 X(CH3+):

Energetics: CH3I photoexcitation

CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2 (n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; 103491.0874 no. 2hv/cm-1 Ry 1 55700.63 2 58926.84 3 59362.38 4 59531.76 5 59701.13 6 61636.86 7 63072.53 8 64492.07 9 64701.77 10 66935.92 11 67984.44 12 69783.06 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; 98560.91016 (4) CH3I+ + e; 76945.26047 CH3 + I**(min); 73829.45 70000 (3) 55000 (2) CH3 + I*; 26798.95741 (1) CH3 + I; 19195.9874 CH3I https://notendur.hi.is/agust/rannsoknir/rempi/ch3i/PXP-260112ak.pxp ; Layo,Gr0; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Energetics

Abs. spectrum (n) = number of photons CH3 + I+ + e; 103491.0874 i= 6 : CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 CH3 + I+ + e; 103491.0874 i= 6 : 1 CH3+ + e + I; Abs. spectrum i= 6 : 1 (4) CH3 + I** CH3I+ + e; 76945.26047 70000 CH3 + I**(min); 73829.45 (3) 55000 (2) CH3 + I*; 26798.95741 (1) CH3 + I; 19195.9874 CH3I https://notendur.hi.is/agust/rannsoknir/rempi/ch3i/PXP-260112ak.pxp ; Layo,Gr0; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Energetics

CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e- (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ i.e. CH3I + 1hvpd -> CH3I* CH3I* -> CH3 (v1,v2,…) + I/I* CH3 (v1,v2,…) + 3hvi -> CH3+ + e- i.e. (1pd + 3i) REMPI

CH3**(i)+I*; i=1-6 CH3**(i)+I; i=1-6 no. 2hv/cm-1 Ry 1 55700.63 2 (12) 8.652 69783.06 34891.53006 286.6025073 7s(0,…) # 2E1/2 $ CH3**(i)+I*; i=1-6 (n) = number of photons CH3**(i)+I; i=1-6 CH3 + I+ + e; 103491.0874 no. 2hv/cm-1 Ry 1 55700.63 2 58926.84 3 59362.38 4 59531.76 5 59701.13 6 61636.86 7 63072.53 8 64492.07 9 64701.77 10 66935.92 11 67984.44 12 69783.06 i= 6 : 1 Abs. spectrum i= 6 : 1 CH3+ + e + I; 98560.91016 (4) CH3I+ + e; 76945.26047 CH3 + I**(min); 73829.45 70000 close to 69783 (3) 55000 (2) CH3 + I*; 26798.95741 (1) CH3 + I; 19195.9874 CH3I https://notendur.hi.is/agust/rannsoknir/rempi/ch3i/PXP-260112ak.pxp ; Layo,Gr0; https://notendur.hi.is/agust/rannsoknir/Crete17/XLS-170919.xlsx ; sheet: Energetics