Update on the FPGA Online Tracking Algorithm

Slides:



Advertisements
Similar presentations
CBM Calorimeter System CBM collaboration meeting, October 2008 I.Korolko(ITEP, Moscow)
Advertisements

Prospects for X(3872) Detection at Panda Jens Sören Lange, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Stephanie Künze, Yutie Liang, David Münchow, Björn.
News on PXD Readout Issues Sören Lange, Universität Gießen, Belle II DAQ/TRG, KEK, 七夕, 平成 21.
Computing EVO meeting, January 15 th 2013 Status of the Tracking Code Gianluigi Boca, Pavia University.
TPC status Marian Ivanov. Outlook TPC performance ExB correction Alignment Nonlinearities and edge effects Drift velocity calibration.
The Silicon Track Trigger (STT) at DØ Beauty 2005 in Assisi, June 2005 Sascha Caron for the DØ collaboration Tag beauty fast …
1 Vertex fitting Zeus student seminar May 9, 2003 Erik Maddox NIKHEF/UvA.
The LiC Detector Toy M. Valentan, M. Regler, R. Frühwirth Austrian Academy of Sciences Institute of High Energy Physics, Vienna InputSimulation ReconstructionOutput.
Vertex Reconstructing Neural Networks at the ZEUS Central Tracking Detector FermiLab, October 2000 Erez Etzion 1, Gideon Dror 2, David Horn 1, Halina Abramowicz.
Some mediation on fast track reconstruction of BESIII Wang Dayong Mar 10,2004.
The High-Level Trigger of the ALICE Experiment Heinz Tilsner Kirchhoff-Institut für Physik Universität Heidelberg International Europhysics Conference.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
MdcPatRec Tracking Status Zhang Yao, Zhang Xueyao Shandong University.
KIP Ivan Kisel JINR-GSI meeting Nov 2003 High-Rate Level-1 Trigger Design Proposal for the CBM Experiment Ivan Kisel for Kirchhoff Institute of.
Normal text - click to edit HLT tracking in TPC Off-line week Gaute Øvrebekk.
Status of BESIII Event Reconstruction System Zepu Mao IHEP BESIII Annual Meeting 2005/05/29.
Studying the efficiency and the space resolution of resistive strips MicroMegas Marco Villa – CERN MAMMA meeting Tuesday, 13 th December 2011 CERN, Geneva.
Modeling PANDA TDAQ system Jacek Otwinowski Krzysztof Korcyl Radoslaw Trebacz Jagiellonian University - Krakow.
1 QuickSim - brief introduction - Akiya Miyamoto KEK 22 June 2005 GLD meeting See also.
Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2.
1 DT Local Reconstruction on CRAFT data Plots for approval CMS- Run meeting, 26/6/09 U.Gasparini, INFN & Univ.Padova on behalf of DT community [ n.b.:
XLV INTERNATIONAL WINTER MEETING ON NUCLEAR PHYSICS Tiago Pérez II Physikalisches Institut For the PANDA collaboration FPGA Compute node for the PANDA.
FIRST RESULTS OF THE SILICON STRIP DETECTOR at STAR Jörg Reinnarth, Jonathan Bouchet, Lilian Martin, Jerome Baudot and the SSD teams in Nantes and Strasbourg.
Current Status of MDC Track Reconstruction MdcPatRec Zhang Yao, Zhang Xueyao
1 MDC Track Finding at BESIII Zang Shilei BES Annual Meeting (Jun 1, 2005) ______________________________________ -Outline- 
SiD Tracking in the LOI and Future Plans Richard Partridge SLAC ALCPG 2009.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
BESIII offline software group Status of BESIII Event Reconstruction System.
Outline Description of the experimental setup Aim of this work TDC spectra analysis Tracking method steps Autocalibration Single tube resolution Summary.
Tracking software of the BESIII drift chamber Linghui WU For the BESIII MDC software group.
FPGA Helix Tracking Algorithm for PANDA Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck, Milan.
Nikhef Scientific Meeting 2000Onne Peters D0 Muon Spectrometer December 14-15, Amsterdam Onne Peters Nikhef Jamboree 2000.
FPGA Helix Tracking Algorithm for PANDA Yutie Liang, Martin Galuska, Thomas Geßler, Jifeng Hu, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck,
FPGA Helix Tracking Algorithm with STT Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Milan Wagner II. Physikalisches.
GSI, December 7 th, 2009 Status of the Pattern Recognition with the STT system alone. Gianluigi Boca 1.
FPGA Helix Tracking Algorithm -- VHDL implementation Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn.
14/06/2010 Stefano Spataro Status of LHE Tracking and Particle Identification Status of LHE Tracking and Particle Identification Stefano Spataro III Panda.
Vienna, PANDA meeting, December 1 st, 2015 Universita’ di Pavia Italy Track efficiency and contamination in Road Finding Pattern Recognition when the interaction.
Off-Detector Processing for Phase II Track Trigger Ulrich Heintz (Brown University) for U.H., M. Narain (Brown U) M. Johnson, R. Lipton (Fermilab) E. Hazen,
M.C. Studies of CDC Axial/Stereo Layer Configuration David Lawrence, JLab Sept. 19, /19/08 1 CDC Tracking MC Studies -- D. Lawrence, JLab.
Torino, June 15 th, 2009 Status of the Pattern Recognition with the Hough transform and the STT system alone. Gianluigi Boca 1.
Gianluigi, 10 Sep 2012 Paris, September 10 th 2012 Status of the Pattern Recognition Code Gianluigi Boca GSI & Pavia University 1.
Frascati September 8 th, 2014 Universita’ di Pavia Italy Improvements in the offline Pattern Recognition in the 20 MHz interaction rate environment Gianluigi.
FPGA Helix Tracking Algorithm with STT
Status of the Pattern Recognition with
PANDA collaboration meeting FEE session
STT Detector risk’s assessment
M. Tiemens The hardware implementation of the cluster finding algorithm and the Burst Building Network.
M. Kuhn, P. Hopchev, M. Ferro-Luzzi
2018/6/15 The Fast Tracker Real Time Processor and Its Impact on the Muon Isolation, Tau & b-Jet Online Selections at ATLAS Francesco Crescioli1 1University.
STT pattern recognition improvements since last December meeting and
Status of the Pattern Recognition with the Hough
Progress on the online tracking algorithm
Hit Triplet Finding in the PANDA-STT
Tracking results from Au+Au test Beam
the Pattern Recognition Workshop
Status of the Offline Pattern Recognition Code GSI, December 10th 2012
Tracking Pattern CM LII
Study of T0 Extraction in the Online Tracking Algorithm
Integration and alignment of ATLAS SCT
Vertex and Kinematic fitting with Pandaroot
Tracking Pattern Recognition
DT Local Reconstruction on CRAFT data
Status of the Offline Pattern Recognition Code Goa, March 12th 2013
The Silicon Track Trigger (STT) at DØ
Alignment of the PHENIX Silicon Vertex Tracker (VTX) in 2014
Status of LHETRACK Tracking with STT+MVD Stefano Spataro
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
road – Hough transform- c2
Wendy Taylor STT Meeting Fermilab September 28, 2001
Presentation transcript:

Update on the FPGA Online Tracking Algorithm Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Björn Spruck, Milan Wagner II. Physikalisches Institut, JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN Dec. 10. 2014

Outline 1. Introduction to the STT 2. Road finding and momentum calculation 3. Implementation with VHDL Beam test data 5. Summary and outlook

Straw Tube Tracker (STT) 4636 Straw tubes 23-27 planar layers 15-19 axial layers (green) in beam direction 4 stereo double-layers for 3D reconstruction, with ±2.89 skew angle (blue/red) From STT : Wire position + drift time

Tracking Algorithm -- Road Finding Layer_ID Hit Tube_ID Hit: Seg_ID (3 bits) + LayerID (4 bits) + Tube_ID (6 bits) + Arrival time 1: Start from inner layer 2: Attach neighbour hit to tracklet layer by layer Boundary between two segments. Number of neighbor: 4 in axial layer; 6 in stereo layer

Tracking Algorithm -- helix parameters calculation Known : xi , yi , di Question: To determine a circle, x2 + y2 + ax + by + c = 0 Method: Minimize the equation E2 = ∑(xi2 + yi2 + a xi+ b yi + c)2 (1/di)2 x y xc, yc, R Sx = ∑xi … Sxx = ∑xixi … Sxxx = ∑xixixi … 1) Circle para. 2) Track quality.

To Improve the Momentum Resolution -- using a 2nd iteration x y xc, yc, R Pt(input) 1st iteration 2nd iteration 0.2GeV/c : 0.195 ±0.0068 0.195±0.0068 0.5GeV/c : 0.5 ±0.0212 0.5 ± 0.0164 1.0GeV/c : 0.99 ±0.0595 1.0 ± 0.0317 2.0GeV/c : 1.85 ±0.213 2.0 ± 0.073 1st iteration 2nd iteration Pt(GeV/c) Pt(GeV/c)

Pz reconstruction 1: The radius, the position of the helix center in the XY plane are determined. 2: Φ = kZ + Φ0 One cylinder the helix lies in. Based on Pt determined before y Crossing points (ellipse) One straw tube x z Track need to be tangent to the crossing ellipse. Gianluigi Boca and Panda Collaboration, Panda STT TDR, 2012

Pz reconstruction Method: Minimize E2 = ∑(Φi + kzi + Φ0)2 (1/di)2 Known : zi , Φ i , di Question: To determine a line, Φ + kz + Φ0= 0

Pz reconstruction Pt = 0.5 GeV/c Pz(input) 0.25 GeV/c : 3.7 %

VHDL Implementation VHDL: Very-high-speed integrated circuits Hardware Description Language. Square root : Look-up table (1-2000)  1-4 4-16 16-64 64-256 … Division: Look-up table a/b = (a*2^n) / (b*2^n) b*2^n in (0.5-1)

Structure of the Algorithm in VHDL 5 4 8 6 7 2 3 1 .. 9 …… T0 Tracking module Input Interface 2D Mapping Road Finder Pt Calc. Pz Calc. Index Ring Buffer T0: 1) from other detector 2) scan in small step

Performance at FPGA For one event with 100 hits (6 tracks): 14 μs Hit reading Road finder Pt extraction Pz extraction (100 cc) (50 cc X 6) (120 cc X 2 X 6) (60 cc X 2 X 6)

Performance at FPGA For one event with 100 hits (6 tracks): 7 μs Hit reading Road finder Pt extraction Pz extraction (100 cc) (50 cc X 6) (120 cc X 2 X 6) (60 cc X 2 X 6)

Tracking at FPGA -- at low event rate Data flow: Hit information at PC  FPGA, extract helix para.  PC PC is used to draw hits and helix in the plot. The helix parameters come from FPGA.

Tracking at FPGA -- 20 MHz Data flow: Hit information at PC  FPGA, extract helix para.  PC PC is used to draw hits and helix in the plot. The helix parameters come from FPGA.

Beam test data Proton beam. Date: Jul. 22 2014. Momentum: 0.8 GeV/c.

Beam test data Event #1 Red Solid circle : drift circle Blue dashed line : track from 1st iteration Red dashed line : track from 2nd iteration

Beam test data Event #4 Red Solid circle : drift circle Blue dashed line : track from 1st iteration Red dashed line : track from 2nd iteration

Summary and Outlook C++ VHDL Pt 1st iteration √ Pt 2nd iteration χ2 calculation Pz 1st iteration Pz 2nd iteration σ_pt : ~ 3.2% σ_pz : ~ 4.2% 7 μs/event (6 tracks) , 140 FPGA @ 20MHz Next to do: Optimize the VHDL code. Include MVD points Test with PTDAQ.

Thank you

Assign Track to Correct Event 1: Number of hits in the track 2: χ2 of the track χ2

Assign Track to Correct Event T0 information: current event(Red) or other events(Green) Black dashed line: track by MC truth Red line: recon. track Blue: recon. using outer layers drift circles belong to current event (Red) or other events (Green) Event #1 Event #1

VHDL implementation T0 Hit ToT T0 Tracking module Input Interface 5 4 8 6 7 2 3 1 .. 9 T0 Tracking module Input Interface 2D Mapping Form tracklet Calc Mom Index Ring Buffer

The Compute Node (CN)

Hardware Description Language VHDL, Verilog, SystemC VHDL: Very-high-speed integrated circuits Hardware Description Language. It’s a dataflow language, unlike procedural computing languages such as C++ which runs sequentially, one instruction at a time. Signal A3_B1 …; Signal A4_B2 …; A3 <= A3_B1; B1 <= A3_B1; A4 <= A4_B2; B2 <= A4_B2; A1 A A3 B1 B B3 A2 A4 B2 B4

Setup and Test PC as data source and receiver. Ethernet. Optical link (UDP by Grzegorz Korcyl ) (not integrated yet) Ethernet via Optical Link FPGA FIFO Tracking algorithm FIFO

Assign a track to the correct event T0 information: current event(Red) or other events(Green) Black dashed line: track by MC truth Red line: recon. track Blue: recon. using outer layers drift circles belong to current event (Red) or other events (Green) Event #2 Event #2

Performance study – single track y(cm) 0.2GeV y(cm) 0.5GeV x(cm) x(cm) 1GeV 2GeV y(cm) y(cm) x(cm) x(cm)

Pz reconstruction Pt = 0.5 GeV/c Pz(input) 0.25 GeV/c : 3.7 %

Square Root Operation 384 bins in the range of 1 ~ 4, error ~ 0.4% sqrt_array_dyn(0) <= "00000001000000000000000000000000"; -- 1.00000 sqrt_array_dyn(1) <= "00000001000000001111111110000000"; -- 1.00390 …… sqrt_array_dyn(383) <= "00000001111111110111111111110000"; -- 1.99805 (Xc, Yc)  R C++ VHDL Xc: 0.7286 0.7278 Yc: 161.153 161.138 R: 161.155 160.624 (0.33%) Zi: C++ VHDL 29.4 ±5.0 20.0 ±5.1 17.0 ±8.1 7.7 ±8.1

Square Root Operation 384 bins in the range of 1 ~ 4, error ~ 0.4% Linear extrapolation, precision improves C++ VHDL Xc: 0.7286 0.7278 Yc: 161.153 161.138 R: 161.155 161.167 (0.01%) Zi: C++ VHDL 29.4 ±5.0 29.23 ±5.1 17.0 ±8.1 16.93 ±8.1

Pt extraction Pt extraction Performance at FPGA sqrt div sqrt sqrt div Number of 4 input LUTs: 70% Number of Occupied Slices: 89% Number of 4 input LUTs: 65% Number of Occupied Slices: 85%

#0

Event #3

Event #6

Beam test data Event #2 Red Solid circle : drift circle Blue dashed line : track from 1st iteration Red dashed line : track from 2nd iteration

Structure of the Algorithm in VHDL 5 4 8 6 7 2 3 1 .. 9 …… T0 Hit reading Road finder Pt extraction Pz extraction T0: 1) from other detector 2) scan in small step