Calculus I (MAT 145) Dr. Day Friday September 29, 2017

Slides:



Advertisements
Similar presentations
Consider the function We could make a graph of the slope: slope Now we connect the dots! The resulting curve is a cosine curve. 2.3 Derivatives of Trigonometric.
Advertisements

Monday, February 25, 2013MAT 145. Monday, February 25, 2013MAT 145.
Derivative Review Part 1 3.3,3.5,3.6,3.8,3.9. Find the derivative of the function p. 181 #1.
DIFFERENTIATION & INTEGRATION CHAPTER 4.  Differentiation is the process of finding the derivative of a function.  Derivative of INTRODUCTION TO DIFFERENTIATION.
Do now as a warm-up: Place an M&M in your mouth, but do NOT bite it. How is an M&M like a composite function? Write your answer on the index card. You.
10.5 Basic Differentiation Properties. Instead of finding the limit of the different quotient to obtain the derivative of a function, we can use the rules.
Friday, February 10, 2012MAT 121. Friday, February 10, 2012MAT 121.
3.6 Derivatives of Logarithmic Functions 1Section 3.6 Derivatives of Log Functions.
Every slope is a derivative. Velocity = slope of the tangent line to a position vs. time graph Acceleration = slope of the velocity vs. time graph How.
How can one use the derivative to find the location of any horizontal tangent lines? How can one use the derivative to write an equation of a tangent line.
Tangents and Normals The equation of a tangent and normal takes the form of a straight line i.e. To find the equation you need to find a value for x, y.
Chapter 4 Techniques of Differentiation Sections 4.1, 4.2, and 4.3.
MAT 125 – Applied Calculus 3.2 – The Product and Quotient Rules.
Differentiation Calculus Chapter 2. The Derivative and the Tangent Line Problem Calculus 2.1.
Section 4.2 – Differentiating Exponential Functions THE MEMORIZATION LIST BEGINS.
Section 6.1 Polynomial Derivatives, Product Rule, Quotient Rule.
GOAL: USE DEFINITION OF DERIVATIVE TO FIND SLOPE, RATE OF CHANGE, INSTANTANEOUS VELOCITY AT A POINT. 3.1 Definition of Derivative.
Thursday, February 9, 2012MAT 121. Thursday, February 9, 2012MAT 121.
3.3 Rules for Differentiation Colorado National Monument.
WARM UP: h(x)=f(g(x)). Identify f(x) and g(x). 1. h(x)=sin(2x) 2. h(x)=(x 2 +2) 1\2 3. If h(x)=f(g(j(x))), identify f(x), g(x) and j(x): h(x)=cos 2 (sinx)
Wednesday, Sept 30, 2015MAT 145. Wednesday, Sept 30, 2015MAT 145.
Monday, Sept 28, 2015MAT 145. Monday, Sept 28, 2015MAT 145.
Wednesday, February 8, 2012MAT 121. Wednesday, February 8, 2012MAT 121.
Math 1411 Chapter 2: Differentiation 2.3 Product and Quotient Rules and Higher-Order Derivatives.
3.1 The Product and Quotient Rules & 3.2 The Chain Rule and the General Power Rule.
After the test… No calculator 3. Given the function defined by for a) State whether the function is even or odd. Justify. b) Find f’(x) c) Write an equation.
Wednesday, February 17, 2016MAT 145. Wednesday, February 17, 2016MAT 145 THE CHAIN RULE WORDS BY: JOHN A. CARTER TUNE: "CLEMENTINE" Here's a function.
Friday, February 12, 2016MAT 145. Friday, February 12, 2016MAT 145.
Calculus I (MAT 145) Dr. Day Friday Feb 5, 2016
Monday, February 15, 2016MAT 145. Function typeDerivative Rule Constant for constant c Power for any real number n Product of constant and functions for.
AP Calculus 3.2 Basic Differentiation Rules Objective: Know and apply the basic rules of differentiation Constant Rule Power Rule Sum and Difference Rule.
A Brief Introduction to Differential Calculus. Recall that the slope is defined as the change in Y divided by the change in X.
Calculus I (MAT 145) Dr. Day Monday September 18, 2017
Calculus I (MAT 145) Dr. Day Monday September 11, 2017
Chapter 3: Differentiation Topics
Calculus I (MAT 145) Dr. Day Wednesday September 20, 2017
Calculus I (MAT 145) Dr. Day Monday Oct 9, 2017
3.6 Chain Rule.
Calculus I (MAT 145) Dr. Day Wednesday September 27, 2017
3.1 Polynomial & Exponential Derivatives
CHAPTER 4 DIFFERENTIATION.
Calculus I (MAT 145) Dr. Day Friday September 29, 2017
Calculus I (MAT 145) Dr. Day Wednesday Oct 11, 2017
Differentiating Polynomials & Equations of Tangents & Normals
Calculus I (MAT 145) Dr. Day Friday September 22, 2017
Calculus I (MAT 145) Dr. Day Monday September 25, 2017
Calculus I (MAT 145) Dr. Day Monday November 27, 2017
2.2 Rules for Differentiation
Derivative of a Function
Unit 6 – Fundamentals of Calculus Section 6
Calculus I (MAT 145) Dr. Day Wednesday Sept 12, 2018
2.4 The Chain Rule.
Derivatives of Trig Functions
Derivatives of Polynomials and Exponential Functions
Chapter 4 More Derivatives Section 4.1 Chain Rule.
Some of the material in these slides is from Calculus 9/E by
The Chain Rule Section 3.4.
Calculus I (MAT 145) Dr. Day Wednesday February 13, 2019
Calculus I (MAT 145) Dr. Day Monday February 11, 2019
Calculus I (MAT 145) Dr. Day Friday February 1, 2019
Calculus I (MAT 145) Dr. Day Friday February 15, 2019
Calculus I (MAT 145) Dr. Day Monday February 18, 2019
Calculus I (MAT 145) Dr. Day Friday February 1, 2019
Derivatives Jeopardy Rates of Change Q $100 Q $100 Q $100 Q $100
Calculus I (MAT 145) Dr. Day Wednesday April 10, 2019
The Chain Rule Section 2.4.
Chapter 4 More Derivatives Section 4.1 Chain Rule.
A Brief Introduction to Differential Calculus
Chapter 4 More Derivatives Section 4.1 Chain Rule.
Presentation transcript:

Calculus I (MAT 145) Dr. Day Friday September 29, 2017 Derivative Shortcuts (Chapter 3) Sums & Differences, Products & Quotients, and More! (3.1- 3.2) Derivatives of Trig Functions (3.3) Derivatives of Composite Functions (3.4) Friday, September 29, 2017 MAT 145

Warm up! . Find the derivatives. Use correct notation! Friday, September 29, 2017 MAT 145

Using Derivative Patterns MAT 145 Suppose s(x), shown below, represents an object’s position as it moves back and forth on a number line, with s measured in centimeters and x in seconds, for x > 0. Calculate the object’s velocity and acceleration functions. Is the object moving left or right at time x = 1? Justify. Determine the object’s velocity and acceleration at time x = 2. Based on those results, describe everything you can about the object’s movement at that instant. Write an equation for the tangent line to the graph of s at time x = 1. Friday, September 29, 2017

Using Derivative Patterns Determine the equation for the line tangent to the graph of g at x = 4. Determine the equation for the line normal to the graph of g at x = 1. At what points on the graph of g, if any, will a tangent line to the curve be parallel to the line 3x – y = –5? Friday, September 29, 2017 MAT 145

Sums, differences, exponentials, & products of constants and functions Friday, September 29, 2017 MAT 145

Derivatives of Trig Functions Friday, September 29, 2017 MAT 145

Derivatives of Composite Functions Friday, February 24, 2017 MAT 145

Derivatives of Composite Functions (3.4) Friday, February 24, 2017 MAT 145

Here's a function in a function And your job here is to find THE CHAIN RULE WORDS BY: JOHN A. CARTER TUNE: "CLEMENTINE" Here's a function in a function And your job here is to find The derivative of the whole thing With respect to x inside. Call the outside f of u And call the inside u of x. Differentiate to find df/du And multiply by du/dx. Use the chain rule. Use the chain rule when e'er you find The derivative of a function compositionally defined. Friday, February 24, 2017 MAT 145

Derivatives of Composite Functions (3.4) Friday, February 24, 2017 MAT 145

Derivatives of Composite Functions Friday, February 24, 2017 MAT 145

Composite Functions Friday, February 24, 2017 MAT 145

Practice Derivative Rules Friday, February 24, 2017 MAT 145

Using Derivative Patterns For s(t) = cos(2t): Calculate s’(t) and s’’(t). Determine an equation for the line tangent to the graph of s when t = π/8. Determine the two values of t closest to t = 0 that lead to horizontal tangent lines. Determine the smallest positive value of t for which s’(t) = 1. If s(t) represents an object’s position on the number line at time t (s in feet, t in minutes), calculate the object’s velocity and acceleration at time t = π/12. Based on those results, describe everything you can about the object’s movement at that instant. Friday, February 24, 2017 MAT 145