M-C simulation of reactor e flux;

Slides:



Advertisements
Similar presentations
Сессия ЯФ ОФН РАН, г., ИТЭФ Статус экспериментальных работ по измерению магнитного момента нейтрино Старостин А.С. ИТЕФ.
Advertisements

Reactor physics Reactor training course Institut für Kernchemie
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Neutron capture cross sections on light nuclei M. Heil, F. Käppeler, E. Uberseder Torino workshop,
Potassium Geo-neutrino Detection Mark Chen Queen’s University Neutrino Geophysics, Honolulu, Hawaii December 15, 2005.
The Nature of Molecules
Multi-physics coupling Application on TRIGA reactor Student Romain Henry Supervisors: Prof. Dr. IZTOK TISELJ Dr. LUKA SNOJ PhD Topic presentation 27/03/2012.
Periodic Table – Filling Order
Nuclear Physics Year 13 Option 2006 Part 3 – Nuclear Fission.
Nuclear Fundamentals Part I Unleashing the Power of the Atom.
IAEA Nuclear Data Section, Vienna, Austria
Please do not write on this document. Thank you. Atomic Radius Data Element Name Atomic Number Atomic Radius (pm) Height of Straws (cm) H He
The Status of Nuclear Data above 20 MeV Masayoshi SUGIMOTO, Tokio FUKAHORI Japan Atomic Energy Agency IAEA’s Technical Meeting on Nuclear Data Libraries.
Periodic Table Of Elements
Anti-neutrinos Spectra from Nuclear Reactors Alejandro Sonzogni National Nuclear Data Center.
Chapter 1 Structure of matter Chapter 2 Nuclear transformation
Chapter 4. Power From Fission 1.Introduction 2.Characteristics of Fission 3. General Features 4. Commercial Reactors 5. Nuclear Reactor Safety 6. Nuclear.
Efforts in Russia V. Sinev Kurchatov Institute. Plan of talk Rovno experiments at th On the determination of the reactor fuel isotopic content by.
Closing a shell-> Stable atom, high ionization energy.
Radioactive Nuclide Nuclide which is unstable. It emits radiation & changes into another kind of atom.
David Argento (some aspects of) cosmogenic nuclide production.
Double Chooz Near Detector Guillaume MENTION CEA Saclay, DAPNIA/SPP Workshop AAP 2007 Friday, December 14 th, 2007
1 Segrè Lost … ! Nuclear Fission How much is recoverable? How much is recoverable? What about capture gammas? (produced by -1 neutrons) What about capture.
UCN Source at the NCSU PULSTAR Reactor Bernard Wehring and Albert Young North Carolina State University International Workshop on Neutron-Antineutron Transition.
SAGE: status and future SAGE: V.N. Gavrin Institute for Nuclear Research of the Russian Academy of Sciences, Moscow.
1 Performance and Physics with the CsI(Tl) Array at the Kuo-Sheng Reactor Neutrino Laboratory  Physics with CsI(Tl) detector  Period -2 configuration.
PRODUCTION OF RADIONUCLIDE PRODUCTION OF RADIONUCLIDE 2/27/2016 L5,L6 and L7 1 PRINCE SATTAM BIN ABDUL AZIZ UNIVERSITY COLLEGE OF PHARMACY Nuclear Pharmacy.
Non-equilibrium Antineutrino spectrum from a Nuclear reactor We consider the evolution of the reactor antineutrino energy spectrum during the periods of.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
KIT – The Research University in the Helmholtz Association INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR) Nuclear Data for Calculation.
Neutron production and iodide transmutation studies using intensive beam of Dubna Phasotron Mitja Majerle Nuclear Physics Institute of CAS Řež, Czech republic.
Artificial Cr-51 neutrino source for the experiment BEST
(on behalf of SIDDHARTA-2 collaboration)
M-C simulation of reactor e flux;
Transmutation of spent nuclear fuel
Reactor anti-neutrinos and neutrinos
Reactor As Neutrino Source
On behalf of TEXONO collaboration
Scattering Reactions Scattering reactions - the incident particle collides with the target nucleus Elastic scattering – a collision between a particle.
1 H 2 He 3 Li 4 Be 5 B 6 C 7 N 8 O 9 F 10 Ne 11 Na 12 Mg 13 Al 14 Si
Simulation for DayaBay Detectors
Outline 1. Introduction & Overview 2. The experiment result 3. Future
Cumulated beta spectrum measurements of fission products
Periodensystem Biomaterials Research - Manfred Maitz H He Li Be B C N
KS4 Chemistry The Periodic Table.
Emission of Energy by Atoms and Electron Configurations
A B 21085At Fe Mo 5827Co 3216S Pb4+ Symbol
How precisely do we know the antineutrino source spectrum from a nuclear reactor? Klaus Schreckenbach (TU München) Klaus Schreckenbach.
THE TRANSITION METALS.
Jordan University of Science and Technology
Periodic Table of the Elements
Chapter 9 Nuclear Radiation
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Resonance Reactions HW 34 In the 19F(p,) reaction:
Outside the nucleus, the beta decay {image} will not occur because the neutron and electron have more total mass than the proton. This process can occur.
The Atom.
Chapter 21 Nuclear Chemistry
ION BEAM ANALYSIS.
Anti-Neutrino Simulations
Electron Configurations
DETECTION LIMITS < 1 ppt ng/L 1-10 ppt ng/L ppt ng/L
Edexcel Topic 1: Key concepts in chemistry
Line Spectra and the Bohr Model
NUCLEAR CHEMISTRY NUCLEONS – The particles found in the nucleus
Nuclear Reactors, BAU, 1st Semester, (Saed Dababneh).
Radioactive Decay Marie Curie and her husband Pierre discovered polonium and radium in The simplest decay form is that of a gamma ray, which represents.
Davide Franco for the Borexino Collaboration Milano University & INFN
(On behalf of the TEXONO Collaboration) Academia Sinica, Taiwan
Neutrino Magnetic Moment : Overview
Kuo-Sheng(國聖) Reactor Neutrino Lab.
Introduction to Periodic Trends
Presentation transcript:

M-C simulation of reactor e flux; STUDIES OF REACTOR ELECTRON NEUTRINO MAGNETIC MOMENT AND RADIATIVE DECAY M-C simulation of reactor e flux; Data analysis for the limits of electron neutrino magnetic moment ; Data analysis for the limit of neutrino radiative decay lifetime; Some physics potential of reactor neutrino experiment. XIN Biao / 辛 標 On behalf of TEXONO collaborator China Institute of Atomic Energy/中國原子能科學研究院 2004.02 @ 新竹

M-C simulation of reactor e flux Theory calculation Experiment Measurement Magnetic moment Radiative decay M-C simulation Experiment Measurement Magnetic moment Radiative decay

electron neutrino flux Simulation of reactor electron neutrino flux Nuclear material Fission products n Structure material Neutron sampling Geometry description Probability of EC decay Electron neutrino flux Physical model n rich nuclei -decay EC EC Electron neutrino emission n rich nuclei - decay Stable isotope even-even Stable isotope electron anti-neutrino emission

Direct fission product Direct fission product M-C simulation ——source of reactor electron neutrino Z 104Tc 18m 103Tc 50s 104Ru stable 103Ru 39d 104Rh 42s 103Rh 104Pd -decay of fission product n EC - N Direct fission product Fission products Structure material 7E-10 - 3E-10 <3E-8 235U Y(Z, N)×PEC (Per fission) 1.7E-6 1.3E-5 239Pu 1E-7 1.2E-8 6.0 1.26 128I 4E-8 0.3 0.88 110Ag 1E-9 1.7 1.9 108Ag 7E-8 0.4 1.15 104Rh <1E-5 0.2 87Sr 1.4E-5 0.005 0.53 86Rb Y(Z, N) PEC(%) QEC(MeV) Direct fission product

M-C simulation ——source of reactor electron neutrino Neutron activation fission products QEC(MeV) σn (barns) PEC(%) Y(Z, N) (Per fission) Y(Z, N)×PEC 235U 239Pu 104Rh 1.15 146 0.4 3.2 6.8 1.3E-4 2.7E-4 110Ag 0.88 89 0.3 0.03 1.1 9E-7 3.3E-5 122Sb 1.62 6.2 2.2 0.012 0.043 2.6E-6 1.0E-5 128I 1.26 6.0 0.12 0.52 6.9E-5 3.1E-4

enrichment of the nucleus (A-1 ) M-C simulation ——source of reactor electron neutrino Structure material isotopes Decay lifetime T1/2 enrichment of the nucleus (A-1 ) QEC (MeV) PEC(%) 55Fe 2.7y 5.8 0.23 100 51Cr 27.7d 4.3 0.75 59Ni 7.6*104y 68.1 1.073 43 113Sn 115.09d 0.97 1.036 49 Contribution to electron neutrino ?

Contribution of different isotopes: M-C simulation of reactor electron neutrino ——physical model Total flux of electron neutrino emitted from reactor structure material: Ratio of neutron capture probability of each isotope in the different cell: Contribution of different isotopes: 50Cr, 54Fe, 58Ni, 112Sn activation isotopes in reactor structure material 51Cr + e- 51V + νe 55Fe + e- 55Mn + νe 59Ni + e- 59Co + νe 113Sn + e- 113In + νe

M-C simulation of reactor electron neutrino ——geometry description 50Cr in RC , SS & Zr-alloy; 54Fe in RC , SS & Zr-alloy; 58Ni in RC , SS& Zr-alloy; 112Sn in Zr-alloy; Nuclear fuel material: UO2; enrichment of 235U : 3 %; Height of the fuel rod: 400cm; Radius of the fuel rod: 0.45cm;

M-C simulation of reactor electron neutrino ——geometry description Reactor core: 624 lattices; Fuel rod: 72 rods in each lattice; Mass of UO2: 138 tons; Control rods And water Zr-alloy UO2

RC 4967tons、stainless steel 1040tons、Zr-alloy 63 tons M-C simulation of reactor electron neutrino ——geometry description RC 4967tons、stainless steel 1040tons、Zr-alloy 63 tons 50Cr --0.95%; 54Fe --4.2%; 58Ni --6.3%; 112Sn --0%. 50Cr --0.01%; 54Fe --0.1%; 58Ni --0.63%; 112Sn --0%. 50Cr --0.005%; 54Fe –0.006%; 58Ni --0.34%; 112Sn –0.01%.

M-C simulation of reactor electron neutrino ——neutron transport Source neutron sampling Watt fission spectrum : Fired by thermal neutron : a=0.988 b=2.249 Simulation of neutron flux Tallies

Simulation result Fission neutrons are mostly absorbed by fuel rods and control rods; Electron neutrino are mainly contributed by Cr-50 in control rods;

n-absorption: Thermal neutron capture cross-section 94% of the captured neutrons are thermal neutrons. Simulation result n-absorption: Thermal neutron capture cross-section

Simulation result Neutrino flux at detector position due to Cr-50 is: 5.0×108 cm-2s-1 Cross check—— K-eff calculation; Uncertainty: The SD of M-C simulation <0.1%; System error < 15%;

Data analysis for reactor electron neutrino magnetic moment Scattering Electron recoil spectrum e magnetic moment fitting

Data analysis——magnetic moment Nsm(E)和Nmm(E) A0 a) t2 t3 t4 t1 t0 Reactor on Aoff Aon Reactor off b) Time Flux Average flux t0: 2001年9月8日; t1: 2001年10月8日; t2: 2001年11月14日; t3: 2001年12月18日; t4: 2002年1月15日;

Data analysis----neutrino magnetic moment Nsm(E) and Nmm(E) Flux of e : flux: 5.0×108cm-2s-1 Energy : 747keV detector: material:HPGe Mass :1.054kg

Data analysis——program No Yes date.rz Standard cut (PSD, cosmic-veto, anticompton) Energy calibration Single spectrum Ni(E) Next spectrum? Read the next *.rz file Spectrum adding ΣNi(E) Read the real measurement time Ti Dead time correction (ai)、random correction (bi, ci) Spectrum normalization n(E)=ΣNi(E)/ ΣTiai bici The end Data analysis——program

Data analysis ——spectrum processing Normalized Non(E) and Nbkg(E) Non(E)-Nbkg(E)

Data analysis ——fitting of the e

Data analysis——neutrino decay Decay model Decay lifetime (c.m./m) Fitting of the experiment data

Data analysis ——neutrino decay Energy range:0~6MeV

Data analysis—— neutrino decay Non(E)-Nbkg(E)

Data analysis—— neutrino decay h=-0.055±0.061 t/mn≥1.3 s·eV-1 (C.L. 68%)

Physics potential Can we increase the flux of the electron neutrinos emitted from a reactor ? 1 fuel rod replaced by Cr-50 rods, …… 2 fuel rods replaced by Cr-50 rods … n fuel rods replaced by Cr-50 rods …

The reactor still work well Physics potential The reactor still work well Neutrino flux can be enhanced up to 103 times

Number of target nuclei Physics potential 71Ga(ne, e-)71Ge CC event rate target materials isotope Nature enrichment (%) Number of target nuclei (1027) X(ne, e-)Y Event rate (counts/day) Gallium 71Ga 39.89 33.7 3.4 Indian 115In 95.7 49.9 20.8 Ytterbium 176Yb 12.7 4.3 6.64 Molybdenum 100Mo 9.63 5.8 3.64 Neutrino flux: 2×1011cm-2s-1 ; 10 tons target materials in nature;

Conclusion We performed the simulation of the emissions of electron neutrinos from a nuclear reactor. At detector position, the electron neutrino flux due to 51Cr is : 5.0×108cm2s-1; The limits of electron neutrino magnetic moment and radiative decay lifetime has been found based on a reactor neutrino experiment : The physics potential of the reactor neutrino experiment has been discussed. t/mn≥1.3 s·eV-1 (C.L. 68%)

Thanks !