Current status and future prospects

Slides:



Advertisements
Similar presentations
IFIC. I. Top-pair production near threshold ● Heaviest known quark (plays an important role in EWSB in many models) ● Important for quantum effects affecting.
Advertisements

The minimal B-L model naturally realized at TeV scale Yuta Orikasa(SOKENDAI) Satoshi Iso(KEK,SOKENDAI) Nobuchika Okada(University of Alabama) Phys.Lett.B676(2009)81.
Y. Sumino (Tohoku Univ.) Understanding Heavy Quark-AntiQuark System by Perturbative QCD.
Electroweak b physics at LEP V. Ciulli INFN Firenze.
Y. Sumino (Tohoku Univ.) Basics of potential-NRQCD and Quarkonium Spectroscopy.
Jörgen Sjölin Stockholm University LHC experimental sensitivity to CP violating gtt couplings November, 2002 Page 1 Why CP in gtt? Standard model contribution.
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
Top Physics at the Tevatron Mike Arov (Louisiana Tech University) for D0 and CDF Collaborations 1.
Introduction to Single-Top Single-Top Cross Section Measurements at ATLAS Patrick Ryan (Michigan State University) The measurement.
As a test case for quark flavor violation in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Top & EW Report Doreen Wackeroth SUNY Buffalo TeV4LHC 10/22/2005.
W properties AT CDF J. E. Garcia INFN Pisa. Outline Corfu Summer Institute Corfu Summer Institute September 10 th 2 1.CDF detector 2.W cross section measurements.
Measurement of α s at NNLO in e+e- annihilation Hasko Stenzel, JLU Giessen, DIS2008.
QCD 与强子物理研讨会, 2010 年 8 月 4 - 10 日,威海 Prospects of Flavor Physics at the LHC 高原宁 清华大学高能物理研究中心 2010/8/61Y. Gao, Prospects of flavor physics at the LHC.
Hints for Low Supersymmetry Scale from Analysis of Running Couplings Dimitri Bourilkov University of Florida DPF06 + JPS06, October 31, 2006, Waikiki,
Extraction of SM parameters Onia and QCD Onia Scales and QCD Effective Field Theories Extraction of alpha_s and m_Q Other examples Open challenges in theory.
C. K. MackayEPS 2003 Electroweak Physics and the Top Quark Mass at the LHC Kate Mackay University of Bristol On behalf of the Atlas & CMS Collaborations.
Y. Sumino (Tohoku Univ.) Development in theory of heavy quarkonia and precision determination of heavy quark masses.
The experimentalists point of view Contributions from André, Reisaburo, Pierre, Marumi … 1.
Semileptonic decays of polarized top quarks: V+A admixture and QCD corrections Yoshiaki Umeda with W. Bernreuther and M. Fuecker 1 Introduction 2 Formalism.
Report on LHT at the LHC ~ Some results from simulation study ~ Shigeki Matsumoto (Univ. of Toyama) 1.What kinds of LHT signals are expected, and how accurately.
C2cr07, Lake Tahoe 26-FEB-07 G. Gutierrez, Fermilab The Top Quark Mass and implications Gaston Gutierrez Fermilab So, in the next 20’ I will try to give.
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
Top quark properties in ATLAS Ruth Laura Sandbach X-SILAFAE-2014, Medellin, Colombia 27/11/2014 X-SILAFAE
Threshold Resummation for Top- Quark Pair Production at ILC J.P. Ma ITP, CAS, Beijing 2005 年直线对撞机国际研讨会, Tsinghua Univ.
1 B meson semileptonic decays Physics Motivation Inclusive properties: oSemileptonic width oMoments of inclusive quantities Exclusive decays What is the.
Emily Nurse W production and properties at CDF0. Emily Nurse W production and properties at CDF1 The electron and muon channels are used to measure W.
IFIC. 1/23 Outline 2/23 I. Top-pair production near threshold Precise determination of the top mass, the width and the Yukawa coupling Seidel, Simon,
Top/QCD program (b) Higher Order EW + QCD Fixed order vs resummed Normalization (and peak position) stabilised by higher orders; –summation of leading.
Alternatives: Beyond SUSY Searches in CMS Dimitri Bourilkov University of Florida For the CMS Collaboration SUSY06, June 2006, Irvine, CA, USA.
Jets and α S in DIS Maxime GOUZEVITCH Laboratoire Leprince-Ringuet Ecole Polytechnique – CNRS/IN2P3, France On behalf of the collaboration On behalf of.
Impact of quark flavour violation on the decay in the MSSM K. Hidaka Tokyo Gakugei University / RIKEN, Wako Collaboration with A. Bartl, H. Eberl, E. Ginina,
Jet Studies at CDF Anwar Ahmad Bhatti The Rockefeller University CDF Collaboration DIS03 St. Petersburg Russia April 24,2003 Inclusive Jet Cross Section.
October 2011 David Toback, Texas A&M University Research Topics Seminar1 David Toback Texas A&M University For the CDF Collaboration CIPANP, June 2012.
Y. Sumino (Tohoku Univ.) Understanding Heavy Quark-AntiQuark System by Perturbative QCD.
ATLAS Higgs Search Strategy and Sources of Systematic Uncertainty Jae Yu For the ATLAS Collaboration 23 June, 2010.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
April 7, 2008 DIS UCL1 Tevatron results Heidi Schellman for the D0 and CDF Collaborations.
Kinematics of Top Decays in the Dilepton and the Lepton + Jets channels: Probing the Top Mass University of Athens - Physics Department Section of Nuclear.
Top Higgs Yukawa Coupling Analysis – Status Report Hajrah Tabassam Quai-i-Azam University, Islamabad ON BEHALF OF: R. Yonamine, T. Tanabe, K. Fujii, KEK.
Top couplings: ILC-B physics interplay Top couplings: ILC-B physics interplay TYL-FJPPL B physics TYL-FJPPL B physics February 20, 2015 LAL February 20,
Stano Tokar, slide 1 Top into Dileptons Stano Tokar Comenius University, Bratislava With a kind permissison of the CDF top group Dec 2004 RTN Workshop.
Higgs Summary Alexei Raspereza On behalf of Higgs Working Group ECFA Workshop, Warsaw 12/06/2006 Outline  Current Status  Contributions in Warsaw  Theory.
IFIC. 1/15 Why are we interested in the top quark? ● Heaviest known quark (plays an important role in EWSB in many models) ● Important for quantum effects.
Moriond 2001Jets at the TeVatron1 QCD: Approaching True Precision or, Latest Jet Results from the TeVatron Experimental Details SubJets and Event Quantities.
Eric COGNERAS LPC Clermont-Ferrand Prospects for Top pair resonance searches in ATLAS Workshop on Top Physics october 2007, Grenoble.
A T : novel variable to study low transverse momentum vector boson production at hadron colliders. Rosa María Durán Delgado The University of Manchester.
From Lagrangian Density to Observable
Electroweak Physics Towards the CDR
Electroweak physics at CEPC
Proposals for near-future BG determinations from control regions
Bc Hadronic Production (New Developments) Oct
QCD Radiative Corrections for the LHC
QCD Factorization for Top Quark Mass Reconstruction
Top mass and its interpretation -- theory
张仁友 (南昌, ) 中国科学技术大学粒子物理与技术中心
Electroweak Results from DØ
University of Tsukuba, Japan Particle Physics Phenomenology,
Controlling the Neutral Drell-Yan at high mass
Single Diffractive Higgs Production at the LHC *
pQCD and Hadron Collider Phenomenology
Improved alpha_s from Tau Decays(*)
Productions and Decays of Charmonium Application of perturbative QCD
Greg Heath University of Bristol
B. Mellado University of the Witwatersrand
Factorization in some exclusive B meson decays
Y.Kitadono (Hiroshima ),
Run-Hui Li Yonsei University
Hints for Low Supersymmetry Scale from Analysis of Running Couplings
Measurement of b-jet Shapes at CDF
Presentation transcript:

Current status and future prospects Top and QCD Current status and future prospects Y. Sumino (Tohoku Univ.)

☆Plan of Talk Introduction: Pert. QCD and Top quark 2. Status of pert. QCD (top processes) 3. Towards precision 𝑚 𝑡 determinations 4. Vision of quantum corrections at frontiers 5. Conclusions and future prospects

p (陽子) p (陽子) LHC LHC実験における反応データ

強い力 _ u u _ u _ u u u ‥‥クォークを陽子・中性子の中に閉じ込めておく力 クォークを陽子・中性子の中から取り出すことは できない=「クォークの閉じ込め」 _ u u 中間子 核子(陽子・中性子など) 決して単体のクォークは取り出せない。 常に  核子(クォーク3つで出来ている)  中間子(クォーク・反クォークの対で出来ている) の中に入っている。 _ u _ u u u 中間子 中間子

d u d u u u 陽子 陽子 (衝突エネルギー)/(陽子の質量×c2) くらいの数の 核子や中間子が生成される。

p (陽子) p (陽子) LHC LHC実験におけるヒッグス粒子生成を 含む事象のシミュレーション 摂動QCDに基づく

What’s Pert. QCD? 3 types of so-called “Pert. QCD predictions” : Confusing (i) Predict observable in series expansion in 𝛼 𝑠 IR safe obs., intrinsic uncertainties ~ (Λ QCD / 𝐸) 𝑛 (ii) Predict observable in the framework of Wilsonian EFT OPE, uncertainties of (i) replaced by non-pert. matrix elements Most accurate, future applications (iii) Predict observable assisted by model predictions Many obs in high-energy experiments depend on hadronization models, PDF. Necessary (in MC) to compare with experimental data Systematic uncertainties difficult to control, O(5-10%) accuracy at LHC

ℒ 𝑄𝐶𝐷 ( 𝛼 𝑠 , 𝑚 𝑞 ;𝜇) Pert. QCD Theory of quarks and gluons renormalization scale ℒ 𝑄𝐶𝐷 ( 𝛼 𝑠 , 𝑚 𝑞 ;𝜇) Theory of quarks and gluons Same input parameters as full QCD. Systematic: own way to estimate errors (𝜇-dep.) Differs from a model ! Predictable observables 𝑞, 𝑔 |𝑞,𝑔 𝑞,𝑔| = ℎ𝑎𝑑𝑟. |ℎ𝑎𝑑𝑟. ℎ𝑎𝑑𝑟.| = 1 testable hypothesis (a) Inclusive observables (hadronic inclusive) ⋯ insensitive to hadronization 𝑅 𝐸 ≡ 𝜎 𝑒 + 𝑒 − →ℎ𝑎𝑑𝑟𝑜𝑛𝑠;𝐸 𝜎 𝑒 + 𝑒 − → 𝜇 + 𝜇 − ;𝐸 • Inclusive cross sections/decay widths e.g. • Distributions of non-colored particles, ℓ, 𝛾, 𝑊,𝐻,⋯ (b) Observables of heavy quarkonium states (only individual hadronic states) • spectrum, leptonic decay width, transition rates

What’s Pert. QCD? 3 types of so-called “Pert. QCD predictions” : Confusing (i) Predict observable in series expansion in 𝛼 𝑠 IR safe obs., intrinsic uncertainties ~ (Λ QCD / 𝐸) 𝑛 (ii) Predict observable in the framework of Wilsonian EFT OPE, uncertainties of (i) replaced by non-pert. matrix elements Most accurate, future applications (iii) Predict observable assisted by model predictions Many obs in high-energy experiments depend on hadronization models, PDF. Necessary (in MC) to compare with experimental data Systematic uncertainties difficult to control, O(5-10%) accuracy at LHC

Remarkable progress of computational technologies in the last 10-20 years Higher-loop corrections Numerical and analytical methods Intersection with frontiers of mathematics Factorization of scales in loop corrections Provide powerful and precise foundation for theory predictions PDFs Radiator fn Matrix element 𝜎 𝑖+𝑗→𝑓 𝑠 = 𝑎,𝑏 0 1 𝑑 𝑥 1 0 1 𝑑 𝑥 2 𝑃 𝑎/𝑖 𝑥 1 , 𝜇 𝐹 𝑃 𝑏/𝑗 𝑥 2 , 𝜇 𝐹 0 1 𝑑𝑧 𝑅 𝑎𝑏 𝑧, 𝜇 𝐹 , 𝑄 𝑀 𝑎𝑏→𝑓 𝑄 2 =𝑧 𝑥 1 𝑥 2 𝑠 2 𝑃 𝑎/𝑖 𝑃 𝑏/𝑗 𝜇 𝐹 𝑎 𝑏 𝑄 𝑖=𝑝 𝑗=𝑝 Separation of scales

Tree-level Higgs potential Role of top quark in the SM vacuum structure 1-loop corrections Tree-level Higgs potential 𝑣 𝐻 𝑚𝐻 1 4𝜋 2 3 4 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 2 log 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 𝜇 2 + 1 4 3 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 2 log 3 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 𝜇 2 𝜆 𝐻 1 4𝜋 2 3 2 𝑔 2 2 Φ † Φ 2 log 𝑔 2 2 Φ † Φ 𝜇 2 + 3 4 𝑔 2 + 𝑔 ′2 2 Φ † Φ 2 log 𝑔 2 + 𝑔 ′2 2 Φ † Φ 𝜇 2 𝑊,𝑍,𝛾 = 246 GeV 𝑉 Φ =− 𝜇 𝐻 2 Φ † Φ+ 𝜆 𝐻 2 Φ † Φ 2 𝑡 1 4𝜋 2 −3 𝑦 𝑡 2 Φ † Φ 2 log 𝑦 𝑡 2 Φ † Φ 𝜇 2 Φ= 1 2 0 𝑣 𝐻 +ℎ

Tree-level Higgs potential Role of top quark in the SM vacuum structure 1-loop corrections Tree-level Higgs potential 1 4𝜋 2 3 4 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 2 log 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 𝜇 2 + 1 4 3 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 2 log 3 𝜆 𝐻 Φ † Φ− 𝜇 𝐻 2 𝜇 2 tree top loop 𝑊,𝑍 loop 1 4𝜋 2 3 2 𝑔 2 2 Φ † Φ 2 log 𝑔 2 2 Φ † Φ 𝜇 2 + 3 4 𝑔 2 + 𝑔 ′2 2 Φ † Φ 2 log 𝑔 2 + 𝑔 ′2 2 Φ † Φ 𝜇 2 Higgs loop 𝑊,𝑍,𝛾 𝜙 𝑐 [GeV] 𝑉 Φ =− 𝜇 𝐻 2 Φ † Φ+ 𝜆 𝐻 2 Φ † Φ 2 𝑡 1 4𝜋 2 −3 𝑦 𝑡 2 Φ † Φ 2 log 𝑦 𝑡 2 Φ † Φ 𝜇 2 Φ= 1 2 0 𝑣 𝐻 +ℎ

𝑡 𝑡 production at LHC 𝑝 𝑝 NNLO predictions Czakon, Heymes, Mitov

Slide from Kim’s talk Top@LC2016

Anomaly in top FB asymmetry has disappeared. Czakon, Heymes, Fiedler, Mitov Soon full NNLO prod.+decay corr. will bring investigations of top quark to a new phase.

Towards precise top mass determinations 𝑡 𝛾,𝑍 e+ 𝑡 ILC LHC Weight function method 𝑡 𝑡 threshold at ILC 𝑡 𝑡 threshold at up-graded LHC and beyond

Slides from Kawabata’s talk TopWG@CERN2014,TopWS2015 Kawabata, Shimizu, YS, Yokoya

Result of LO simulation analysis using 𝑙+4-jets mode S. Kawabata, 1601.07684[hep-ph] LHC 100fb-1 Currently NLO simulation analysis is being performed. NLO production NLO decay NLO prod.+decay (dilepton) [GeV] Our current goal: ∆ 𝑚 pole <1 GeV With this method many theoretical problems should go away, except non-pert. effects of background color charge distr. on top decays.

Precision 𝑚 𝑡 measurement near 𝑡 𝑡 threshold at 𝑒 + 𝑒 − collider After many years of endeavor, computation of NNNLO corrections to 𝑒 + 𝑒 − →𝑡 𝑡 cross section near threshold has recently been completed. 𝑀 1𝑆 Beneke,Kiyo,Marquard, Penin,Piclum,Steinhauser 𝑔 𝑡 color-singlet 1S resonance Our estimate: ∆ 𝑚 𝑡 =20-30 MeV Kiyo, Mishima, YS

Slide from Kiyo’s talk Top@LC2016

LHC 3 ab-1 ∆ 𝑚 𝑡 ≈2 GeV FCC 100 TeV ∆ 𝑚 𝑡 ≈0.2 GeV @ 1 ab-1 ∆ 𝑚 𝑡 ≈0.06 GeV @ 10 ab-1 𝛾 𝑡 𝑞 𝑡 = +

A new vision of loop integral based on Baikov’s method Baikov rep. of loop integral: 𝑑 𝐷 𝑝 1 ⋯ 𝑑 𝐷 𝑝 𝐿 1 𝐷 1 𝑛 1 ⋯ 𝐷 𝑁 𝑛 𝑁 = 𝐶 1 𝑑 𝑥 1 𝑥 1 𝑛 1 ⋯ 𝐶 𝑁 𝑑 𝑥 𝑁 𝑥 𝑁 𝑛 𝑁 𝑃 𝑥 1 ,⋯, 𝑥 𝑁 (𝐷−𝐸−𝐿−1)/2 𝑥 𝑖 c.f. Mahler measure 𝐶 𝑖 As 𝐷→∞, branch points turn to saddle points and using saddle-point approx. coefficients of 1/𝐷 expansion can be computed by Gauss integrals. Most difficult computation of 5-loop QCD beta fn. relies on this technique.

Conclusions and future prospects Predictability of pert. QCD is rapidly developing and will continue further. A current task is to determine 𝛼 𝑠 ( 𝑀 𝑍 ) accurately (among others). Soon scrutiny of top quark will start at LHC, however, cannot be completely free from the unclean environment. Eventually 𝑒 + 𝑒 − machine is necessary for precision physics. Hints for deeper understanding on quantum nature of field theory from progressing theories of radiative corrections. ∆ 𝑚 𝑡 <1 GeV probably reachable

Slide from Heymes’s talk Loops&Legs2016

Slide from Mitov’s talk KEK-PH2016 Anomaly in top FB asymmetry is gone. Czakon, Heymes, Fiedler, Mitov

Slides from Kawabata’s talk TopWS2015