Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.

Slides:



Advertisements
Similar presentations
Principles of Density Estimation
Advertisements

Lecture 3 Nonparametric density estimation and classification
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Pattern Classification, Chapter 2 (Part 2) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R.
Pattern Classification Chapter 2 (Part 2)0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern recognition Professor Aly A. Farag
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
MACHINE LEARNING 9. Nonparametric Methods. Introduction Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 2 
Chapter 4 (Part 1): Non-Parametric Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification, Chapter 3 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Prénom Nom Document Analysis: Non Parametric Methods for Pattern Recognition Prof. Rolf Ingold, University of Fribourg Master course, spring semester 2008.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Chapter 4 (part 2): Non-Parametric Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Recognition: Baysian Decision Theory Charles Tappert Seidenberg School of CSIS, Pace University.
COMMON EVALUATION FINAL PROJECT Vira Oleksyuk ECE 8110: Introduction to machine Learning and Pattern Recognition.
Nearest Neighbor (NN) Rule & k-Nearest Neighbor (k-NN) Rule Non-parametric : Can be used with arbitrary distributions, No need to assume that the form.
Non-Parameter Estimation 主講人:虞台文. Contents Introduction Parzen Windows k n -Nearest-Neighbor Estimation Classification Techiques – The Nearest-Neighbor.
Computational Intelligence: Methods and Applications Lecture 12 Bayesian decisions: foundation of learning Włodzisław Duch Dept. of Informatics, UMK Google:
Image Modeling & Segmentation Aly Farag and Asem Ali Lecture #2.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
METU Informatics Institute Min720 Pattern Classification with Bio-Medical Applications Part 6: Nearest and k-nearest Neighbor Classification.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
KNN & Naïve Bayes Hongning Wang Today’s lecture Instance-based classifiers – k nearest neighbors – Non-parametric learning algorithm Model-based.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Eick: kNN kNN: A Non-parametric Classification and Prediction Technique Goals of this set of transparencies: 1.Introduce kNN---a popular non-parameric.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification All materials in these slides* were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley.
Pattern Classification Chapter 2(Part 3) 0 Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O.
Nonparametric Density Estimation – k-nearest neighbor (kNN) 02/20/17
Non-Parameter Estimation
School of Computer Science & Engineering
3(+1) classifiers from the Bayesian world
Outline Parameter estimation – continued Non-parametric methods.
K Nearest Neighbor Classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Nearest-Neighbor Classifiers
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
LECTURE 16: NONPARAMETRIC TECHNIQUES
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Nonparametric density estimation and classification
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John.
ECE – Pattern Recognition Lecture 10 – Nonparametric Density Estimation – k-nearest-neighbor (kNN) Hairong Qi, Gonzalez Family Professor Electrical.
Presentation transcript:

Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors and the publisher

Chapter 4: Nonparametric Techniques (Sections 1-6) Introduction Density Estimation Parzen Windows Kn–Nearest-Neighbor Estimation The Nearest-Neighbor Rule Metrics and Nearest-Neighbor Classification

1. Introduction All Parametric densities are unimodal (have a single local maximum), whereas many practical problems involve multi-modal densities Nonparametric procedures can be used with arbitrary distributions and without the assumption that the forms of the underlying densities are known There are two types of nonparametric methods: Estimate density functions P(x |j) without assuming a model Parzen Windows Bypass density functions and directly estimate P(j |x) k-Nearest Neighbor (kNN) Pattern Classification, Ch4

Parzen windows kNN Pattern Classification, Ch4

The Nearest-Neighbor Rule Let Dn = {x1, x2, …, xn} be a set of n labeled prototypes Let x’  Dn be the closest prototype to a test point x then the nearest-neighbor rule for classifying x is to assign it the label associated with x’ The nearest-neighbor rule leads to an error rate greater than the minimum possible: the Bayes rate If the number of prototypes is large (unlimited), the error rate of the nearest-neighbor classifier is never worse than twice the Bayes rate (it can be demonstrated!) If n  , it is always possible to find x’ sufficiently close so that: P(i | x’)  P(i | x) If P(m | x)  1, then the nearest neighbor selection is almost always the same as the Bayes selection Pattern Classification, Ch4

The k-nearest-neighbor rule Goal: Classify x by assigning it the label most frequently represented among the k nearest samples and use a voting scheme Usually choose k odd so no voting ties Pattern Classification, Ch4

Pattern Classification, Ch4

Pattern Classification, Ch4

Pattern Classification, Ch4

Pattern Classification, Ch 4

Step-by-step algorithm for finding the nearest neighbor class decision regions and decision boundaries in 2D Find the midpoints between all pairs of points. Find the perpendicular bisectors of the lines between all pairs of points (they go through the midpoints found in step 1). Find the point regions, the region surrounding each point that is closest to the point (this region is outlined by the perpendicular bisector segments that are perpendicular to the shortest line from the point to the bisector segment).  These regions are called Voronoi cells. Merge adjoining point regions of the same class (such as a two-class problem of dog versus cat) to obtain class decision regions (any point falling into the region is assigned to the class of the region).  This is done by eliminating the boundary lines (perpendicular bisector segments) between points of the same class.  The resulting connected line segments defining the decision regions are called the decision boundaries. Pattern Classification, Ch4

Pattern Classification, Ch4