Effects of Climate Variability and Change on the Columbia River Basin

Slides:



Advertisements
Similar presentations
Alan F. Hamlet, Phil Mote, Martyn Clark, Dennis P. Lettenmaier Center for Science in the Earth System Climate Impacts Group and Department of Civil and.
Advertisements

Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Alan F. Hamlet JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington Hydrologic Implications of Climate.
Alan F. Hamlet Dennis P. Lettenmaier Amy K. Snover JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Generating a Comprehensive Climate Change Streamflow Scenarios Database for the Columbia River Basin Alan F. Hamlet Kurt Unger Philip W. Mote Eric Salathé.
Optimized Flood Control in the Columbia River Basin for a Global Warming Scenario 1Dept. of Civil and Env. Engineering, UW 2CSES Climate Impacts Group,
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet Philip W. Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Dennis P. Lettenmaier Alan F. Hamlet JISAO Climate Impacts Group and the Department of Civil and Environmental Engineering University of Washington July,
Alan F. Hamlet Dennis P. Lettenmaier Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental Engineering.
Alan F. Hamlet Andy Wood Seethu Babu Marketa McGuire Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Alan F. Hamlet Philip W. Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Alan F. Hamlet Se-Yeun Lee Kristian Mickelson Marketa McGuire Elsner JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Optimized Flood Control in the Columbia River Basin for a Global Warming Scenario 1Dept. of Civil and Env. Engineering, UW 2CSES Climate Impacts Group,
Alan F. Hamlet Philip W. Mote Martyn Clark Dennis P. Lettenmaier JISAO/SMA Climate Impacts Group and Department of Civil and Environmental Engineering.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington September,
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet Philip W. Mote Martyn Clark Dennis P. Lettenmaier Center for Science in the Earth System Climate Impacts Group and Department of Civil and.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Introduction 1. Climate – Variations in temperature and precipitation are now predictable with a reasonable accuracy with lead times of up to a year (
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet Jeffrey Payne Dennis P. Lettenmaier Richard Palmer JISAO Climate Impacts Group and the Department of Civil Engineering University of Washington.
Sources of Skill and Error in Long Range Columbia River Streamflow Forecasts: A Comparison of the Role of Hydrologic State Variables and Winter Climate.
Alan F. Hamlet Philip W. Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Alan F. Hamlet, Philip W. Mote, Richard Palmer Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University.
Alan F. Hamlet Philip Mote Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental.
Assessing the Influence of Decadal Climate Variability and Climate Change on Snowpacks in the Pacific Northwest JISAO/SMA Climate Impacts Group and the.
Hydrologic Forecasting Alan F. Hamlet Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of.
Alan F. Hamlet Andy Wood Dennis P. Lettenmaier JISAO Center for Science in the Earth System Climate Impacts Group and the Department.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
UBC/UW 2011 Hydrology and Water Resources Symposium Friday, September 30, 2011 DIAGNOSIS OF CHANGING COOL SEASON PRECIPITATION STATISTICS IN THE WESTERN.
Alan F. Hamlet JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington Hydrologic Implications of Climate.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier JISAO/CSES Climate Impacts Group Dept. of Civil and Environmental Engineering University of Washington.
Long-Range Streamflow Forecasting Products and Water Resources Management Applications in the Columbia River Basin Alan F. Hamlet, Andy Wood, Dennis P.
Effects of Climate Variability and Change on the Columbia River Basin
Estimating Changes in Flood Risk due to 20th Century Warming and Climate Variability in the Western U.S. Alan F. Hamlet Dennis P. Lettenmaier.
JISAO Center for Science in the Earth System Climate Impacts Group
Hydrologic Implications of 20th Century Climate Variability and Global Climate Change in the Western U.S. Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier
(April, 2001-September, 2002) JISAO Climate Impacts Group and the
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier
Hydrologic implications of 20th century warming in the western U.S.
JISAO Center for Science in the Earth System Climate Impacts Group
Richard N.Palmer, Alan F. Hamlet, Philip W. Mote, Nate Mantua,
Hydrologic Implications of 20th Century Warming in the Western U.S.
Alan F. Hamlet Prof. Dennis P. Lettenmaier (Chair) Phd Final Exam
Hydrologic Implications of 20th Century Warming in the Western U.S.
POTENTIAL IMPACTS OF CLIMATE CHANGE ON WATER RESOURCES: Accelerated Climate Prediction Initiative (ACPI) Results for the Columbia River Basin Dennis.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier
Climate impacts on the Pacific Northwest environment: Hydrology and water resources Dennis P. Lettenmaier Department of Civil and Environmental Engineering.
Alan F. Hamlet, Philip W. Mote, Nate Mantua, Dennis P. Lettenmaier
Trends in Runoff and Soil Moisture in the Western U.S
Hydrologic Forecasting
Long-Lead Streamflow Forecast for the Columbia River Basin for
Effects of Temperature and Precipitation Variability on Snowpack Trends in the Western U.S. JISAO/SMA Climate Impacts Group and the Department of Civil.
Climate Change in the Pacific Northwest
Alan F. Hamlet, Philip W. Mote, Dennis P. Lettenmaier
Water Resources Planning for an Uncertain Future Climate
Hydrologic Changes in the Western U.S. from
2006 Water Resources Outlook for the Columbia River Basin
Presentation transcript:

Effects of Climate Variability and Change on the Columbia River Basin Center for Science in the Earth System Climate Impacts Group and Department of Civil and Environmental Engineering University of Washington Feb, 2006 Alan F. Hamlet Philip Mote Dennis P. Lettenmaier

Hydroclimatology of the Pacific Northwest

Annual PNW Precipitation (mm) Elevation (m) The Dalles

(mm) Winter Precipitation Summer Precipitation

Hydrologic Characteristics of PNW Rivers

Sensitivity of Snowmelt and Transient Rivers to Changes in Temperature and Precipitation Temperature warms, precipitation unaltered: Streamflow timing is altered Annual volume stays about the same Precipitation increases, temperature unaltered: Streamflow timing stays about the same Annual volume is altered

Pacific Decadal Oscillation El Niño Southern Oscillation A history of the PDO A history of ENSO warm warm cool 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Effects of the PDO and ENSO on Columbia River Summer Streamflows PDO Cool Cool Warm Warm high high low low Ocean Productivity

Long-Term Trends in Temperature, Precipitation, and Streamflow

Trends in Annual Streamflow at The Dalles from 1858-1998 are strongly downward.

The Dust Bowl was probably not the worst drought sequence in the past 250 years red = observed, blue = reconstructed Source: Gedalof, Z., D.L. Peterson and Nathan J. Mantua. (in review). Columbia River Flow and Drought Since 1750. Submitted to Journal of the American Water Resources Association.

Precip Tmax PNW CA GB CRB Tmin Canada USA Fig 1 Domain and time series of cool season precip tmax tmin CRB Tmin

Precipitation

Tmin

Trends in Winter (Oct-Mar) Precipitation and Temperature Tmax Tmin 1916- 2003 DJF Avg Temperature Rel. Trend %/yr Trend (°C/yr) Trend (°C/yr) 1947- 2003 DJF Avg Temperature Rel. Trend %/yr Trend (°C/yr) Trend (°C/yr)

20th Century Trends in Hydrologic Variables

Schematic of VIC Hydrologic Model and Energy Balance Snow Model PNW CA CRB GB Snow Model

Trends in April 1 SWE 1950-1997 Mote P.W.,Hamlet A.F., Clark M.P., Lettenmaier D.P., 2005, Declining mountain snowpack in western North America, BAMS (in press)

Overall Trends in April 1 SWE from 1947-2003 DJF avg T (C) Trend %/yr Trend %/yr

Temperature Related Trends in April 1 SWE from 1947-2003 DJF avg T (C) Trend %/yr Trend %/yr

Precipitation Related Trends in April 1 SWE from 1947-2003 DJF avg T (C) Trend %/yr Trend %/yr

peak snowpack are towards earlier calendar dates Trends in timing of peak snowpack are towards earlier calendar dates Timing of peak snowpack has been advancing in the past 82 years, with lowest elevations advancing the most (30-40 days in some parts of the Cascades). The melt season starts sooner, and snowmelt-driven runoff has been observed to be trending earlier as well. Change in Date

spring flows rise and summer flows drop As the West warms, spring flows rise and summer flows drop Stewart IT, Cayan DR, Dettinger MD, 2005: Changes toward earlier streamflow timing across western North America, J. Climate, 18 (8): 1136-1155 Spring snowmelt timing has advanced by 10-40 days in most of the West, leading to increasing flow in March (blue circles) and decreasing flow in June (red circles), especially in the Pacific Northwest.

June March Trends in simulated fraction of annual runoff in each month from 1947-2003 (cells > 50 mm of SWE on April 1) March June Relative Trend (% per year)

Trends in March Runoff Trends in June Runoff DJF Temp (°C) DJF Temp (°C) Trend %/yr Trend %/yr

Global Climate Change Scenarios and Hydrologic Impacts for the PNW

Humans are altering atmospheric composition Methane has increased 151%, nitrous oxide 17%, also greenhouse gases

The earth is warming -- abruptly What it is: Average surface temperature year by year 3 main features: warming to 1940 cooling 1940-1970 warming since 1970 causes of these are different 1996-1999 were generally warmer than the top dots shown (continuing warming trend)

Natural AND human influences explain the observations best. Natural Climate Influence Human Climate Influence Red: observations of global average temperature Grey: simulations with a climate model (huge computer program, like weather prediction model only run for hundreds of years) Natural influence: volcanoes, solar variations – guesses before ~1970, better since then Human influence: greenhouse gases, sulfate aerosols it is possible to simulate the climate of the last 100 years, and the conclusion is that humans didn’t matter much before 1960 – the early warming and the cooling were largely natural, and the late-century warming was largely human-caused All Climate Influences

Four Delta Method Climate Change Scenarios for the PNW Somewhat wetter winters and perhaps somewhat dryer summers

Changes in Mean Temperature and Precipitation or Bias Corrected Output from GCMs ColSim Reservoir Model VIC Hydrology Model

The warmest locations are most sensitive to warming +4.5% winter precip

Changes in Simulated April 1 Snowpack for the Canadian and U. S Changes in Simulated April 1 Snowpack for the Canadian and U.S. portions of the Columbia River basin (% change relative to current climate) Current Climate “2020s” (+1.7 C) “2040s” (+ 2.25 C) -3.6% -11.5% -21.4% -34.8% April 1 SWE (mm)

Naturalized Flow for Historic and Global Warming Scenarios Compared to Effects of Regulation at 1990 Level Development Historic Naturalized Flow Estimated Range of Naturalized Flow With 2040’s Warming Regulated Flow

Frequency of Drought in the Columbia River Comparable to Water Year 1992 (data from 1962-1997) x 4.7 x 2 x 1.3 x 1.3

Decadal Climate Variability and Climate Change

Will Global Warming be “Warm and Wet” or “Warm and Dry”? Answer: Probably BOTH!

Water Resources Implications for the Columbia River Basin

Impacts on Columbia Basin hydropower supplies Winter and Spring: increased generation Summer: decreased generation Annual: total production will depend primarily on annual precipitation (+2C, +6%) (+2.3C, +5%) (+2.9C, -4%) NWPCC (2005)

Warming climate impacts on electricity demand Reductions in winter heating demand Small increases in summer air conditioning demand in the warmest parts of the region From a variety of charts in an NWPCC report (http://www.nwcouncil.org/library/2002/2002-11.pdf; see Fig.15), the monthly electricity demand during the winter is ~25000 MW; during the summer it's more like 20000 MW. So, the changes in winter demand in this figure are probably a reduction ~10% (as a maximum). This jives with some of the graphs from Sailor (I attached one) that calculates the sensitivity of electricity consumption for a 2 degree C warming to be a little less than 10%. NWPCC 2005

Managed Flow Augmentation The flow needed to provide acceptable flow velocity for juvenile transport is frequently higher than natural flow, particularly in late summer (I.e. use of storage is required). Climate change increases the amount of storage required to meet flow targets. Currently very little storage is allocated to fish in comparison with hydropower. In a conflict between hydro or irrigation and fish flow, the current reservoir operating policies are designed to protect hydro and irrigation (fish flow storage allocation for main stem and Snake River flow targets is at the top of a shared reservoir storage pool) The Columbia River Treaty does not provide explicitly for summer flow in the U.S. (transboundary issues). Compare with guaranteed winter releases associated with flood control. Hydro storage Fish flow storage

Adaptation to climate change will require complex tradeoffs between ecosystem protection and hydropower operations Source: Payne, J.T., A.W. Wood, A.F. Hamlet, R.N. Palmer, and D.P. Lettenmaier, 2004, Mitigating the effects of climate change on the water resources of the Columbia River basin, Climatic Change, Vol. 62, Issue 1-3, 233-256

Flood Control vs. Refill Maintaining an appropriate balance between flood protection and the reliability of reservoir refill is crucial to many water resources objectives in the Columbia Basin. As streamflow timing shifts move peak flows earlier in the year, flood evacuation schedules may need to be revised both to protect against early season flooding and to begin refill earlier to capture the (smaller) spring freshet. Model experiments (see Payne et al. 2004) have shown that moving flood evacuation two weeks to one month earlier in the year helps mitigate reductions in refill reliability associated with streamflow timing shifts. Payne, J.T., A.W. Wood, A.F. Hamlet, R.N. Palmer, and D.P. Lettenmaier, 2004, Mitigating the effects of climate change on the water resources of the Columbia River basin, Climatic Change, Vol. 62, Issue 1-3, 233-256

Temperature thresholds for coldwater fish in freshwater Warming temperatures will increasingly stress coldwater fish in the warmest parts of our region A monthly average temperature of 68ºF (20ºC) has been used as an upper limit for resident cold water fish habitat, and is known to stress Pacific salmon during periods of freshwater migration, spawning, and rearing +1.7 °C +2.3 °C

Implications for Transboundary Agreements Snowpack in the BC portion of the Columbia basin is much less sensitive to warming in comparison with portions of the basin in the U.S. and streamflow timing shifts will also be smaller in Canada. As warming progresses, Canada will have an increasing fraction of the snowpack contributing to summer streamflow volumes in the Columbia basin. These differing impacts in the two countries have the potential to “unbalance” the current coordination agreements, and will present serious challenges to meeting instream flows on the U.S. side. Changes in flood control, hydropower production, and instream flow augmentation will all be needed. Long-range planning is needed to address these issues.

Conclusions Climate change will result in significant hydrologic changes in the Columbia River and its tributaries. These changes will not be equally distributed throughout the region or between different water management objectives. With hydrologic changes, there will come a need to “rebalance” the system to compensate for these different impacts in each sector. This “rebalancing” will take time and will involve complex (and contentious) tradeoffs between different management objectives. We have the tools that we need to begin planning for a warmer future. We should begin to include climate information in planning now to reduce the severity of future impacts as much as possible.

Selected References and URL’s Climate Impacts Group Website http://www.cses.washington.edu/cig/ White Papers, Agenda, Presentations for CIG 2001 Climate Change Workshop http://jisao.washington.edu/PNWimpacts/Workshops/Skamania2001/WP01_agenda.htm Climate Change Streamflow Scenarios for Water Planning Studies http://www.ce.washington.edu/~hamleaf/climate_change_streamflows/CR_cc.htm Northwest Power and Conservation Council Columbia Basin Hydropower Study http://www.nwppc.org/energy/powerplan/plan/Default.htm Refs on Climate Variability and Climate Change http://www.ce.washington.edu/~hamleaf/hamlet/publications.html