NUCLEOSYTHESIS OF HEAVY ELEMENTS IN THERMONUCLEAR EXPLOSIONS “Mike”, “Par” and “Barbel” Yu. S. Lutostansky, V. I. Lyashuk. National Research.

Slides:



Advertisements
Similar presentations
Chapter 21: Nuclear Chemistry Chemistry 1062: Principles of Chemistry II Andy Aspaas, Instructor.
Advertisements

M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
The peculiarities of the production and decay of superheavy nuclei M.G.Itkis Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia.
Introduction Introduction Rapid nucleosynthesis – models and sites Rapid nucleosynthesis – models and sites R-process under high neutron environment R-process.
Mini Quiz- Half Sheet H = 1.01 g/mol, O = g/mol S = g/mol, N = g/mol, I = g/mol 1.How many grams in 3.4 x molecules of H.
Nuclear Chemistry. Images elements.html elements.html.
NUCLEAR CHEMISTRY 2F-1 (of 15) NUCLEONS – The particles found in the nucleus Protons (+) Neutrons (0) ATOMIC NUMBER (Z) – The number of protons in the.
Dr. Said M. El-Kurdi1 Nuclear properties Chapter 3.
Nuclear Chemistry “Bravo” Test 1954 – 15,000 kilotons.
Nuclear Chemistry “Bravo” Test 1954 – 15,000 kilotons.
Beta Delayed Neutron Covariances Tim Johnson, Libby McCutchan, Alejandro Sonzogni National Nuclear Data Center.
Opportunities for synthesis of new superheavy nuclei (What really can be done within the next few years) State of the art Outline of the model (4 slides.
NE Introduction to Nuclear Science Spring 2012 Classroom Session 3: Radioactive Decay Types Radioactive Decay and Growth Isotopes and Decay Diagrams.
Chapter 1 Structure of matter Chapter 2 Nuclear transformation
Known nuclides PROPERTIES OF FUNDAMENTAL PARTICLES Particle Symbol Charge Mass (x Coulombs) (x kg) Proton P Neutron N.
Nuclear Chemistry Chapter 23 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Chapter 21 Nuclear Chemistry
3/2003 Rev 1 I.2.0 – slide 1 of 12 Session I.2.0 Part I Review of Fundamentals Module 2Introduction Session 0Part I Table of Contents IAEA Post Graduate.
Nuclear Chemistry. Nuclear Chemistry looks at the number of protons and neutrons in an atom Radioactive Decay = Spontaneous disintegration of a nucleus.
Nuclear forces and Radioactivity
Nuclear Chemistry CLICKER REVIEW. What is the daughter nuclide if U- 235 undergoes alpha decay? A. U B. Th – 231 C. Th – 235 D. Pa – 231 Response.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Nuclear Fission and Fusion
CHAPTER FIVE(23) Nuclear Chemistry. Chapter 5 / Nuclear Chemistry Chapter Five Contains: 5.1 The Nature of Nuclear Reactions 5.2 Nuclear Stability 5.3.
1 Cross sections of neutron reactions in S-Cl-Ar region in the s-process of nucleosynthesis C. Oprea 1, P. J. Szalanski 2, A. Ioan 1, P. M. Potlog 3 1Frank.
Dr. Bill Pezzaglia Nuclear Physics Updated: 2011Feb07 AstroPhysics Notes 1 Rough draft.
Chapter 21 Nuclear Chemistry
CONCURRENT ENROLLMENT CHEMISTRY
Dr. Bill Pezzaglia Nuclear Physics
University of Colorado
Nuclear Chemistry.
A. Casanovas (UPC), C. Domingo-Pardo (IFIC), C. Guerrero (U
NUCLEAR CHEMISTRY Nuclear Particles: Mass Charge Symbol
Nuclear Chemistry (Topic for Regents exam, SAT II exam and AP exam)
Isochronous Mode of the CR
Nuclear Transformations
Nuclear Chemistry.
Aim # 47: How can we obtain energy from the nucleus of an atom?
E ISOTOPES, NUCLIDES protons, p neutrons, n
Nuclear Chemistry Section 4.4, Chapter 24.
Energy Unit Radioactivity.
Nuclear Stability Nuclear Changes
CHEM 312 Lecture 7: Fission Readings: Modern Nuclear Chemistry, Chapter 11; Nuclear and Radiochemistry, Chapter 3 General Overview of Fission Energetics.
Sensitivity of reaction dynamics by analysis of kinetic energy spectra of emitted light particles and formation of evaporation residue nuclei.
Radioactivity & Nuclear Energy.
Nuclear Reactions Fission and Fusion.
Chapter 21 Nuclear Chemistry
NUCLEAR CHEMISTRY NUCLEONS – The particles found in the nucleus
Nuclear Chemistry.
Nuclear Chemistry.
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
Dr. Bill Pezzaglia Nuclear Physics
Nuclear Transformations
Performed experiments Nuclotron – set up ENERGY PLUS TRANSMUTATION
Review Atomic Number (Z) – number of protons
Bell Work: Radioactivity
Nuclear Chemistry: Radioactivity & Types of Radiation
Nuclear Physics PHY
Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
New Transuranium Isotopes in Multinucleon Transfer Reactions
Nuclear Chemistry.
Kazuo MUTO Tokyo Institute of Technology
NEUTRINO INTERACTION WITH NUCLEI
Spontaneous fission rates
Nuclear Chemistry The energy of life.
Radioactivity The Nucleus Isotopes Radioactivity
Unit 4 – Nuclear Reactions
21.1 Nuclear Stability and Radioactive Decay
Jumpstart #3D 1) What are the three main types of nuclear decay particles? 2) What are the symbols for all three kinds? Do not forget to.
Nuclear Chemistry Essential Question: What are the different types of radioactive decay? How does each type change the nucleus?
Presentation transcript:

NUCLEOSYTHESIS OF HEAVY ELEMENTS IN THERMONUCLEAR EXPLOSIONS “Mike”, “Par” and “Barbel” Yu. S. Lutostansky, V. I. Lyashuk. National Research Center "Kurchatov Institute" Institute for Nuclear Research, Russian Academy of Science --------------------------------------------------------------------------------- НУКЛЕОСИТЕЗ ТЯЖЕЛЫХ ЭЛЕМЕНТОВ В ТЕРМОЯДЕРНЫХ ВЗРЫВАХ “Майк”, “Пар” и “Барбел” Ю. С. Лютостанский, В. И. Ляшук. Национальный Исследовательский Центр "Курчатовский институт" Институт Ядерных Исследований, Российской Академии Наук, Москва ------------------------------------------------------ 3rd International Conference on Particle Physics and Astrophysics (ICPPA– 2017) 04.10.2017 1

DYNAMIC PROCESSES OF IMPULCE NUCLEOSYNTESIS. Superheavy nuclei β-decay fission s-process track r-process track β-decay The tracks of elements synthesis in s (slow)- and r (rapid)- processes. 2

DYNAMICAL NUCLEOSYNTHESIS Duration time calculations. Time of new nuclei synthesis The dependence of r-process duration time on mass A-value under different external conditions: curve 1) – constant nn = 1026 cm-3, T = 1.5 109K; 2) – the same nn, T = 1.109K; 3) – dynamical calc. with ρ0 = 2.105 g/cm5, T = 1.109K [(t) = 0 . ехp (-t/H), Т(t) = Т0 . ехр(-t/3H)]. Yu. S. Lyutostanskii and I. V. Panov. Astron Phys. Lett. v. 14, pp. 168-174 (1988). 3

dn(A, Z, t)/dt = – (A, Z).n(A, Z, t) – n(A, Z, t).n(A, Z, t) + r –process equations for the concentration calculations. Dynamic model: n/ n(A, Z)→  n/ n (A, Z, t); n(A, Z) → n(A, Z, t) Concentrations n(A,Z, t) are changing in time (may be more than 6000 equations):   dn(A, Z, t)/dt = – (A, Z).n(A, Z, t) – n(A, Z, t).n(A, Z, t) + + n(A+1, Z, t).n(A+1, Z, t) + n(A–1, Z, t).n(A–1, Z, t) – n(A, Z).n(A, Z, t) + + (A, Z–1).n(A, Z–1, t) × P(A, Z–1) + (A+1, Z–1).n(A+1, Z–1,t) × P1n(A+1, Z–1)+ + (A+2,Z–1).n(A+2, Z–1, t) × P2n(A+2,Z–1) + (A+3,Z–1)n(A+3, Z–1, t) × P3n(A+3,Z–1) + Ff (A, Z) + (A, Z, t) n(t) and n(t) – rates of (n,γ) and (γ,n) –reactions; all fluxes and spectra are time depended =ln2/T1/2 — -decay rate, P - probability of (A, Z) nuclide creation after –-decay of (A,Z-1) nuclide. Branching coefficients of isobaric chains - P1n, P2n, Р3n corresponds to probabilities of one-, two- and three- delayed neutrons emission in –- decay of the neutron-rich nuclei. Ff (A, Z) describes fission processes: (n, f) + spontaneous and beta-delayed fission. (A, Z) - neutrino capturing processes. 4

Prompt process in the explosive nucleosynthesis Multiple neutron capturing process on Uranium material (U – target) , t < 10-6 s. 5

+ n,2n(A+1, Z, t).n(A+1, Z, t) – n,2n(A, Z, t).n(A, Z, t) ”Prompt rapid” = pr –process equations for the concentration calculations Concentrations n(A,Z, t) are changing in “prompt” time (t = 0 – 10-6 s): dn(A, Z, t)/dt = – n(A, Z, t).n(A, Z, t) + n(A–1, Z, t).n(A–1, Z, t) + n,2n(A+1, Z, t).n(A+1, Z, t) – n,2n(A, Z, t).n(A, Z, t) – n,fn(A, Z, t).n(A, Z, t) + [ , n, α, sf ] Were n,(t), n,2n(t), n,fn(t) – rates of (n,γ), (n, 2n), (n, fn) –reactions; all fluxes and spectra are “prompt” time-t depended. [ , n, α, sf ] – is slow time – τ depended (τ = 0 – 100 min).  = ln2/T1/2 — -decay rate, n — rate of -delayed neutrons emission in –- decay of the neutron-rich nuclei, f — rate of -delayed fission in –- decay of the neutron-rich nuclei, α — α-decay rate, sf — rate of spontaneous fission. Adiabatic binary model (ABM) + Monte – Carlo method was used in t-interval calc. 6

7

Significant Nuclear Tests in the U.S.A. Heavy Element Program Power there is no obvious relationship between the power of the explosion and the neutron flux There is no obvious relationship between the power of the explosion and the neutron flux 8

Standard rms deviation δi (%) Yields (concentrations in relative units) for “Mike”, “Par” and “Barbel” experiments Yields of transuranium nuclei measured in the thermonuclear explosions “Mike”, “Par” and “Barbel” (LANL data). Line – approximation Y(A)/Y(Ai) = exp(–bi.A + ci) i = 1 (“Mike”) A1 = 239, b1 = 1.570, c1 = 375.491; i = 2 (“Barbel”) A2 = 244, b2 = 1.395, c2= 340.584; i = 3 (“Par”) A3 = 245, b3 = 1.388, c3 = 341.015. Standard rms deviation δi (%) δ1 = 56% (“Mike”), δ2 = 60.2% (“Barbel”), δ3 = 86.8% (“Par”). Ю.С. Лютостанский, В.И. Ляшук, И.В. Панов. Известия АН СССР Сер. Физ. 1990, т. 54, стр. 2137; Препринт ИТЭФ 25-90, М. 1990. 9

“Mike” experiment - 1952 (Calc. Yields rel. to exp. data) 10 1) ● – This calculations ABM – model, δ = 91 %. 2,3) O – D. W. Dorn, Phys. Rev. B 126, 693 (1962), δ > 400%. 4) □ – V. I. Zagrebaev, A. V. Karpov, I. N. Mishustin, W. Greiner. Phys. Rev. C 84, 044617 (2011), δ = 180 %.

Calculations for “Par” experiment (1964) (Calc. Yields rel. to exp Calculations for “Par” experiment (1964) (Calc. Yields rel. to exp. data) 11 1) ● – This calculations ABM – model, δ = 33 %. 2,3) O – D. W. Dorn and R. W. Hoff , Phys. Rev. Lett., 14, 440 (1965), 2) δ = 76%, 3) δ = 417% 4) - - - - fitting: Y(A)/Y(Ai) = exp(–bi.A + ci) i = 3, A3 = 245, b3 = 1.388, c3 = 341.015, δ = 86.8%. 11

Calculations for “Barbel” experiment (1964) (Calc. Yields rel. to exp Calculations for “Barbel” experiment (1964) (Calc. Yields rel. to exp. data) 1) ● – This calculations ABM – model, δ = 29.3 %. 2) O – G. I. Bell, Phys. Rev. B 139, 1207 (1965), δ = 33.5 %, 3) - - - - fitting: Y(A)/Y(Ai) = exp(–bi.A + ci) i = 2, A3 = 244, b3 = 1.395, c2 = 340.6, δ = 60.2%. 12 12

Table 1. Calculated and experimental relative yields of transuranium nuclides. Calculations with adiabatic binary model (ABM) and standard deviations δ from experimental data (in %) of ABM calculations and exponential approximation. “Mike” “Par” “Barbel” A Y(A)exper [3] Y(A)calc ABM [4] [6] 239 1.00 240 3.6310-01 6.4810-01 241 3.9010-02 1.3410-01 242 1.9110-02 4.1110-02 243 2.1010-03 5.2510-03 244 1.1810-03 1.0310-03 245 1.2410-04 1.0610-04 1.6110-01 2.2110-01 246 4.7810-05 1.7010-05 8.5010-01 4.9310-01 1.1310-01 7.3810-02 247 3.9010-06 2.9110-06 1.1010-01 1.3910-01 1.3510-02 1.6310-02 248 1.2010-06 5.6110-07 5.1010-02 5.1510-02 5.2210-03 4.3610-03 249 1.1010-07 1.8310-07 9.0010-03 9.5710-04 1.2010-03 250 – 3.3310-08 4.1010-03 3.7910-03 2.5710-04 2.6510-04 251 1.0410-08 1.3010-03 9.6910-04 8.5910-05 252 1.0310-09 1.5810-09 2.2010-04 2.1310-04 2.3010-05 1.5810-05 253 4.010-10 4.0510-10 1.1010-04 5.3110-05 9.5710-06 4.8210-06 254 4.210-11 5.4410-11 1.2010-05 9.5810-06 7.8310-07 7.8710-07 255 5.710-11 1.2010-11 4.3010-06 2.3210-06 3.9610-07 2.1410-07 256 2.6010-07 3.5410-07 3.0810-08 257 5.6010-08 8.0710-08 5.6510-09 7.2410-09 δ % 56 (1a) 91 87 (1c) 39 60 (1b) 29 13