No Class on Friday There will be NO class on: FRIDAY 1/27/17

Slides:



Advertisements
Similar presentations
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Term B10.
Advertisements

1 Outline r Principles of network applications m App architectures m App requirements r Web and HTTP m Objects vs. root files m Persistent, pipelining,
Domain Name System (or Service) (DNS) Computer Networks Computer Networks Spring 2012 Spring 2012.
2: Application Layer1 FTP, SMTP and DNS. 2: Application Layer2 FTP: separate control, data connections r FTP client contacts FTP server at port 21, specifying.
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts, routers: –IP address (32 bit) - used for addressing datagrams –“name”, e.g., gaia.cs.umass.edu.
2: Application Layer1 Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
Application Layer session 1 TELE3118: Network Technologies Week 12: DNS Some slides have been taken from: r Computer Networking: A Top Down Approach.
1 Application layer r Electronic Mail m SMTP, POP3, IMAP r DNS r P2P file sharing.
CPSC 441: DNS1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes derived.
Esimerkki: Sähköposti. Lappeenranta University of Technology / JP, PH, AH Electronic Mail Three major components: user agents mail servers simple mail.
Introduction 1 Lecture 7 Application Layer (FTP, ) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Electronic Mail Three major components: SMTP user agents mail servers
Introduction 1-1 Chapter 2 FTP & Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 IC322 Fall.
2: Application Layer1 Chapter 2 Application Layer These slides derived from Computer Networking: A Top Down Approach, 6 th edition. Jim Kurose, Keith Ross.
CS 4396 Computer Networks Lab
1 Domain Name System (DNS). 2 DNS: Domain Name System Internet hosts: – IP address (32 bit) - used for addressing datagrams – “name”, e.g.,
Domain Name System (DNS)
SMTP, POP3, IMAP.
1 Application Layer Lecture 5 Imran Ahmed University of Management & Technology.
Trying out HTTP (client side) for yourself
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 10 Omar Meqdadi Department of Computer Science and Software Engineering University.
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail m SMTP,
IT 424 Networks2 IT 424 Networks2 Ack.: Slides are adapted from the slides of the book: “Computer Networking” – J. Kurose, K. Ross Chapter 2: Application.
Application Layer Protocols Simple Mail Transfer Protocol.
1 Computer Communication & Networks Lecture 27 Application Layer: Electronic mail and FTP Waleed.
DNS,SMTP,MIME.
21-1 Last time □ Finish HTTP □ FTP This time □ SMTP ( ) □ DNS.
CS 471/571 Domain Name Server Slides from Kurose and Ross.
DNS: Domain Name System
1 DNS: Domain Name System People: many identifiers: m SSN, name, Passport # Internet hosts, routers: m IP address (32 bit) - used for addressing datagrams.
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April A note on the use.
DNS: Domain Name System People: many identifiers: – SSN, name, Passport # Internet hosts, routers: – IP address (32 bit) - used for addressing datagrams.
2: Application Layer1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
File Transfer Protocol (FTP)
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 8 Omar Meqdadi Department of Computer Science and Software Engineering University of.
CPSC 441: DNS 1. DNS: Domain Name System Internet hosts: m IP address (32 bit) - used for addressing datagrams m “name”, e.g., - used by.
CS 3830 Day 10 Introduction 1-1. Announcements r Quiz #2 this Friday r Program 2 posted yesterday 2: Application Layer 2.
CS 3830 Day 9 Introduction 1-1. Announcements r Quiz #2 this Friday r Demo prog1 and prog2 together starting this Wednesday 2: Application Layer 2.
Lecture 5: Web Continued 2-1. Outline  Network basics:  HTTP protocols  Studies on HTTP performance from different views:  Browser types [NSDI 2014]
Chapter 2 Application Layer Computer Networking: A Top Down Approach, 4 th edition. Jim Kurose, Keith Ross Addison-Wesley, July 2007.
2: Application Layer 1 Chapter 2: Application layer r 2.1 Principles of network applications r 2.2 Web and HTTP r 2.3 FTP r 2.4 Electronic Mail  SMTP,
Slides based on Carey Williamson’s: FTP & SMTP1 File Transfer Protocol (FTP) r FTP client contacts FTP server at port 21, specifying TCP as transport protocol.
Application Layer, 2.5 DNS 2-1 Chapter 2 Application Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley.
Important r On Friday, could you ask students to please me their groups (one per group) for Project 2 so we can assign IP addresses. I’ll send.
CSEN 404 Application Layer II Amr El Mougy Lamia Al Badrawy.
Spring 2006 CPE : Application Layer_DNS 1 Special Topics in Computer Engineering Application layer: Domain Name System Some of these Slides are.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
@Yuan Xue A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their.
Spring 2006 CPE : Application Layer_ 1 Special Topics in Computer Engineering Application layer: Some of these Slides are Based on Slides.
Last time Finish HTTP FTP.
2: Application Layer 1 Some network apps r r Web r Instant messaging r Remote login r P2P file sharing r Multi-user network games r Streaming stored.
Introduction to Networks
Session 6 INST 346 Technologies, Infrastructure and Architecture
Introduction to Communication Networks
Data Communications and Computer Networks Chapter 2 CS 3830 Lecture 9
Chapter 2 Application Layer
Chapter 7: Application layer
Cookies, Web Cache & DNS Dr. Adil Yousif.
Review of Previous Lecture
Chapter 2: Application layer
Chapter 2: Application layer
CSE 4213: Computer Networks II
DNS: Domain Name System
The Application Layer: SMTP, FTP
FTP, SMTP and DNS 2: Application Layer.
Chapter 2 Application Layer
Lecture 3 – Chapter 2 CIS 5617, Fall 2019 Anduo Wang
Presentation transcript:

No Class on Friday There will be NO class on: FRIDAY 1/27/17 Homework 2 is out: Due 2/8/17 Project 2 is out: Due 2/22/17

Web caches (proxy server) Goal: satisfy client request without involving origin server user sets browser: Web accesses via cache browser sends all HTTP requests to cache object in cache: cache returns object else cache requests object from origin server, then returns object to client origin server Proxy server HTTP request HTTP request client HTTP response HTTP response HTTP request HTTP response client origin server

More about Web caching Why Web caching? Cache acts as both client and server Typically cache is installed by ISP (university, company, residential ISP) Why Web caching? Reduce response time for client request. Reduce traffic on an institution’s access link. Internet dense with caches enables “poor” content providers to effectively deliver content (but so does P2P file sharing)

Caching example origin Assumptions servers average object size = 100,000 bits avg. request rate from institution’s browsers to origin servers = 15 req/sec delay from institutional router to any origin server and back to router = 2 sec Consequences utilization on LAN = 15% utilization on access link = 100% total delay = Internet delay + access delay + LAN delay = 2 sec + minutes + milliseconds public Internet 1.5 Mbps access link institutional network 10 Mbps LAN institutional cache

Caching example (cont) origin servers Possible solution increase bandwidth of access link to, say, 10 Mbps Consequences utilization on LAN = 15% utilization on access link = 15% Total delay = Internet delay + access delay + LAN delay = 2 sec + msecs + msecs often a costly upgrade public Internet 10 Mbps access link institutional network 10 Mbps LAN institutional cache

Caching example (cont) origin servers Install cache suppose hit rate is .4 Consequence 40% requests will be satisfied almost immediately 60% requests satisfied by origin server utilization of access link reduced to 60%, resulting in negligible delays (say 10 msec) total avg delay = Internet delay + access delay + LAN delay = .6*(2.01) secs + milliseconds < 1.4 secs public Internet 1.5 Mbps access link institutional network 10 Mbps LAN institutional cache

If-modified-since: <date> If-modified-since: <date> Conditional GET cache server Goal: don’t send object if cache has up-to-date cached version cache: specify date of cached copy in HTTP request If-modified-since: <date> server: response contains no object if cached copy is up-to-date: HTTP/1.0 304 Not Modified HTTP request msg If-modified-since: <date> object not modified HTTP response HTTP/1.0 304 Not Modified HTTP request msg If-modified-since: <date> object modified HTTP response HTTP/1.0 200 OK <data>

Outline Principles of network applications Web and HTTP FTP App architectures App requirements Web and HTTP FTP

FTP: the file transfer protocol user interface client file transfer FTP server user at host local file system remote file system transfer file to/from remote host client/server model client: side that initiates transfer (either to/from remote) server: remote host ftp: RFC 959 ftp server: port 21

FTP: separate control, data connections client server TCP control connection port 21 TCP data connection port 20 FTP client contacts FTP server at port 21, specifying TCP as transport protocol Client obtains authorization over control connection Client browses remote directory by sending commands over control connection. When server receives a command for a file transfer, the server opens a TCP data connection to client After transferring one file, server closes connection. Server opens a second TCP data connection to transfer another file. Control connection: “out of band” FTP server maintains “state”: current directory, earlier authentication

Application layer Electronic Mail DNS P2P file sharing SMTP, POP3, IMAP DNS P2P file sharing

Electronic Mail Three major components: SMTP SMTP SMTP user agents user mailbox outgoing message queue Three major components: user agents mail servers simple mail transfer protocol: SMTP User Agent a.k.a. “mail reader” composing, editing, reading mail messages e.g., Outlook, elm, Mozilla Thunderbird, iPhone mail client outgoing, incoming messages stored on server user agent mail server user agent SMTP mail server user agent SMTP mail server SMTP user agent user agent user agent 12

Electronic Mail: mail servers user agent Mail Servers mailbox contains incoming messages for user message queue of outgoing (to be sent) mail messages SMTP protocol between mail servers to send email messages client: sending mail server “server”: receiving mail server mail server user agent SMTP mail server user agent SMTP mail server SMTP user agent user agent user agent 13

Scenario: Alice sends message to Bob 1) Alice uses UA to compose message and “to” bob@someschool.edu 2) Alice’s UA sends message to her mail server; message placed in message queue 3) Client side of SMTP opens TCP connection with Bob’s mail server 4) SMTP client sends Alice’s message over the TCP connection 5) Bob’s mail server places the message in Bob’s mailbox 6) Bob invokes his user agent to read message mail server mail server 1 user agent user agent 2 3 6 4 5

SMTP: final words Comparison with HTTP: SMTP uses persistent connections SMTP requires message (header & body) to be in 7-bit ASCII Comparison with HTTP: HTTP: pull SMTP: push both have ASCII command/response interaction, status codes HTTP: each object encapsulated in its own response msg SMTP: multiple objects sent in multipart msg

Mail message format header body SMTP: protocol for exchanging email msgs RFC 822: standard for text message format: header lines, e.g., To: From: Subject: different from SMTP commands! body the “message”, ASCII characters only header blank line body

Message format: multimedia extensions MIME: multimedia mail extension, RFC 2045, 2056 additional lines in msg header declare MIME content type From: alice@crepes.fr To: bob@hamburger.edu Subject: Picture of yummy crepe. MIME-Version: 1.0 Content-Transfer-Encoding: base64 Content-Type: image/jpeg base64 encoded data ..... ......................... ......base64 encoded data MIME version method used to encode data multimedia data type, subtype, parameter declaration encoded data

Mail access protocols SMTP SMTP access protocol user agent user agent sender’s mail server receiver’s mail server SMTP: delivery/storage to receiver’s server Mail access protocol: retrieval from server POP: Post Office Protocol [RFC 1939] authorization (agent <-->server) and download IMAP: Internet Mail Access Protocol [RFC 1730] more features (more complex) manipulation of stored msgs on server HTTP: Hotmail , Yahoo! Mail, etc.

POP3 protocol authorization phase C: list transaction phase, client: S: +OK POP3 server ready C: user bob S: +OK C: pass hungry S: +OK user successfully logged on authorization phase client commands: user: declare username pass: password server responses +OK -ERR transaction phase, client: list: list message numbers retr: retrieve message by number dele: delete quit C: list S: 1 498 S: 2 912 S: . C: retr 1 S: <message 1 contents> C: dele 1 C: retr 2 C: dele 2 C: quit S: +OK POP3 server signing off

Outline Electronic Mail SMTP, POP3, IMAP DNS P2P file sharing

DNS: Domain Name System People: many identifiers: SSN, name, passport # Internet hosts, routers: IP address (32 bit) - used for addressing datagrams “name”, e.g., www.yahoo.com - used by humans Q: map between IP addresses and name ? Domain Name System: distributed database implemented in hierarchy of many name servers application-layer protocol host, routers, name servers to communicate to resolve names (address/name translation) note: core Internet function, implemented as application-layer protocol complexity at network’s “edge”

DNS Why not centralized DNS? DNS services single point of failure traffic volume distant centralized database maintenance doesn’t scale! DNS services Hostname to IP address translation Host aliasing Canonical and alias names Mail server aliasing Load distribution Replicated Web servers: set of IP addresses for one canonical name

Distributed, Hierarchical Database Root DNS Servers com DNS servers org DNS servers edu DNS servers poly.edu DNS servers umass.edu yahoo.com amazon.com pbs.org Client wants IP for www.amazon.com; 1st approx: Client queries a root server to find com DNS server Client queries com DNS server to get amazon.com DNS server Client queries amazon.com DNS server to get IP address for www.amazon.com

DNS: Root name servers contacted by local name server that can not resolve name root name server: contacts authoritative name server if name mapping not known gets mapping returns mapping to local name server b USC-ISI Marina del Rey, CA l ICANN Los Angeles, CA e NASA Mt View, CA f Internet Software C. Palo Alto, CA (and 17 other locations) i Autonomica, Stockholm (plus 3 other locations) k RIPE London (also Amsterdam, Frankfurt) m WIDE Tokyo a Verisign, Dulles, VA c Cogent, Herndon, VA (also Los Angeles) d U Maryland College Park, MD g US DoD Vienna, VA h ARL Aberdeen, MD j Verisign, ( 11 locations) 13 root name servers worldwide

TLD and Authoritative Servers Top-level domain (TLD) servers: responsible for com, org, net, edu, etc, and all top-level country domains uk, fr, ca, jp. Network solutions maintains servers for com TLD Educause for edu TLD Authoritative DNS servers: organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers (e.g., Web and mail). Can be maintained by organization or service provider

Local Name Server Does not strictly belong to hierarchy Each ISP (residential ISP, company, university) has one. Also called “default name server” When a host makes a DNS query, query is sent to its local DNS server Acts as a proxy, forwards query into hierarchy.

authoritative DNS server Example root DNS server 2 Host at cis.poly.edu wants IP address for gaia.cs.umass.edu 3 TLD DNS server 4 5 local DNS server dns.poly.edu 7 6 1 8 authoritative DNS server dns.cs.umass.edu requesting host cis.poly.edu gaia.cs.umass.edu

authoritative DNS server Recursive queries requesting host cis.poly.edu gaia.cs.umass.edu root DNS server local DNS server dns.poly.edu 1 2 4 5 6 authoritative DNS server dns.cs.umass.edu 7 8 TLD DNS server 3 recursive query: puts burden of name resolution on contacted name server iterated query: contacted server replies with name of server to contact “I don’t know this name, but ask this server”

DNS: caching and updating records once (any) name server learns mapping, it caches mapping cache entries timeout (disappear) after some time TLD servers typically cached in local name servers Thus root name servers not often visited update/notify mechanisms under design by IETF RFC 2136 http://www.ietf.org/html.charters/dnsind-charter.html

RR format: (name, value, type, ttl) DNS records DNS: distributed db storing resource records (RR) RR format: (name, value, type, ttl) Type=A name is hostname value is IP address Type=CNAME name is alias name for some “cannonical” (the real) name www.ibm.com is really servereast.backup2.ibm.com value is cannonical name Type=NS name is domain (e.g. foo.com) value is IP address of authoritative name server for this domain Type=MX value is Canon. name of mailserver associated with alias name

DNS protocol, messages DNS protocol : query and reply messages, both with same message format msg header identification: 16 bit # for query, reply to query uses same # flags: query or reply recursion desired recursion available reply is authoritative

DNS protocol, messages Name, type fields for a query RRs in reponse to query records for authoritative servers additional “helpful” info that may be used

Pure P2P architecture no always-on server arbitrary end systems directly communicate peers are intermittently connected and change IP addresses Three topics: file distribution searching for information case Study: Skype peer-peer 33

File Distribution: Server-Client vs P2P Question : How much time to distribute file from one server to N peers? us: server upload bandwidth Server ui: peer i upload bandwidth u1 d1 u2 d2 us di: peer i download bandwidth File, size F dN Network (with abundant bandwidth) uN 34

File distribution time: server-client server sequentially sends N copies: NF/us time client i takes F/di time to download F u2 u1 d1 d2 us Network (with abundant bandwidth) dN uN = dcs = max { NF/us, F/min(di) } i Time to distribute F to N clients using client/server approach increases linearly in N (for large N) 35

File distribution time: P2P Server server must send one copy: F/us time client i takes F/di time to download NF bits must be downloaded (aggregate) F u2 u1 d1 d2 us Network (with abundant bandwidth) dN uN fastest possible upload rate: us + Sui dP2P = max { F/us, F/min(di) , NF/(us + Sui) } i 36

Server-client vs. P2P: example Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us 37