Prime Numbers Eratosthenes’ Sieve

Slides:



Advertisements
Similar presentations
Prime and Composite Numbers.
Advertisements

Chapter 4 Number Theory. Terms Factors Divides, divisible, divisibility Multiple.
Coordinate Geometry by Monica Yuskaitis. Copyright © 2000 by Monica Yuskaitis Definition Grid – A pattern of horizontal and vertical lines, usually forming.
Fractions XIV Multiplication of Fractions Created by: Mrs. Yuskaitis Presented by: Mr. McCarthy.
Sieve of Eratosthenes.
Why are Prime Numbers called prime & Sieve of Eratosthenes Group Members – Umang Chandra Sneh Lata Gupta Shivam Rastogi Rohan Chaudhary Vivek Chaudhary.
Prime Numbers Eratosthenes’(ehr-uh-TAHS-thuh-neez) Sieve
Prime Numbers With Mrs Ford. Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was.
Parallelization of ‘Sieve of Eratosthenes’ Algorithm
Chapter 1 Fractions Our Goals:
Sieve of Eratosthenes. The Sieve of Eratosthenes is a method that.
RATIOS & PROPORTIONS A ratio is a comparison of two numbers by division. To write ratios, use the word to, a colon, or a fraction bar. EXAMPLE #1: John.
Mean. Copyright © 2000 by Monica Yuskaitis Vocabulary Review Sum – the answer to an addition problem. Addend – the numbers you added together to get the.
Fractions XIII Multiplication of Whole Numbers. How to Find the Fraction of a Whole Number The first thing to remember is “of” means multiply in mathematics.
A prime number is a whole number which only has two factors: one and itself. A prime number is a whole number which only has two factors: one and itself.
Factors, Primes & Composite Numbers
Percent III by Monica Yuskaitis.
Percent of a Number.
Coordinate Geometry by Monica Yuskaitis.
Fractions XV Multiplication of Fractions with Mixed Numbers
Prime Numbers Eratosthenes’ Sieve
Prime Numbers Eratosthenes’ Sieve
How to add, subtract, multiply and divide fractions and mixed numbers
WELCOME TO MATHEMATICS WORKSHOP
Coordinate Geometry by Monica Yuskaitis.
Prime Numbers Eratosthenes’ Sieve
Fractions XIV Multiplication of Fractions
Prime Numbers.
Coordinate Geometry by Monica Yuskaitis.
Prime Numbers Eratosthenes’ Sieve
Prime Numbers.
Prime Numbers Eratosthenes’ Sieve
Using The Sieve of Eratosthenes
Fractions XIII Multiplication of Whole Numbers
Prime Numbers Eratosthenes’ Sieve
Prime Numbers Eratosthenes’ Sieve
Prime Numbers Eratosthenes’ Sieve
Prime Numbers Eratosthenes’ Sieve
Prime Numbers Eratosthenes’ Sieve
Fractions XIV Multiplication of Fractions
Prime Numbers Eratosthenes’ Sieve
Factors, Primes & Composite Numbers
Percent III by Monica Yuskaitis.
Fractions XV Multiplication of Fractions with Mixed Numbers
Coordinate Geometry.
Factors, Primes & Composite Numbers
Factors, Primes & Composite Numbers
Prime Numbers Eratosthenes’ Sieve
Coordinate Geometry by Monica Yuskaitis.
Percent III by Monica Yuskaitis.
Percent I by Monica Yuskaitis.
Coordinate Geometry by Monica Yuskaitis.
Percent II.
Prime Numbers Eratosthenes’ Sieve
Factors, Primes & Composite Numbers
Percent II by Monica Yuskaitis.
Fractions XIV Multiplication of Fractions
Fractions XV Multiplication of Fractions with Mixed Numbers
Multiplication of Fractions
by Monica Yuskaitis Retrieved from Internet 1/27/13
Percent I by Monica Yuskaitis.
Presentation transcript:

Prime Numbers Eratosthenes’ Sieve By Monica Yuskaitis

Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was the librarian at Alexandria, Egypt in 200 B.C. Note every book was a scroll. Copyright © 2000 by Monica Yuskaitis

Eratosthenes (ehr-uh-TAHS-thuh-neez) Eratosthenes was a Greek mathematician, astronomer, and geographer. He invented a method for finding prime numbers that is still used today. This method is called Eratosthenes’ Sieve. Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Eratosthenes’ Sieve A sieve has holes in it and is used to filter out the juice. Eratosthenes’s sieve filters out numbers to find the prime numbers. Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Definition Factor – a number that is multiplied by another to give a product. 7 x 8 = 56 Factors Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Definition Factor – a number that divides evenly into another. 56 ÷ 8 = 7 Factor Copyright © 2000 by Monica Yuskaitis

7 Definition 7 is prime because the only numbers Prime Number – a number that has only two factors, itself and 1. 7 7 is prime because the only numbers that will divide into it evenly are 1 and 7. Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Hundreds Chart On graph paper, make a chart of the numbers from 1 to 100, with 10 numbers in each row. Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Hundreds Chart 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

1 – Cross out 1; it is not prime. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

Remember all numbers divisible by 2 are even numbers. Hint For Next Step Remember all numbers divisible by 2 are even numbers. Copyright © 2000 by Monica Yuskaitis

2 – Leave 2; cross out multiples of 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Hint For Next Step To find multiples of 3, add the digits of a number; see if you can divide this number evenly by 3; then the number is a multiple of 3. 2 6 7 Total of digits = 15 3 divides evenly into 15 267 is a multiple of 3 Copyright © 2000 by Monica Yuskaitis

3– Leave 3; cross out multiples of 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Hint For the Next Step To find the multiples of 5 look for numbers that end with the digit 0 and 5. 385 is a multiple of 5 & 890 is a multiple of 5 because the last digit ends with 0 or 5. Copyright © 2000 by Monica Yuskaitis

4– Leave 5; cross out multiples of 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

5– Leave 7; cross out multiples of 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

6–Leave 11; cross out multiples of 11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

All the numbers left are prime 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Copyright © 2000 by Monica Yuskaitis

The Prime Numbers from 1 to 100 are as follows: 2,3,5,7,11,13,17,19, 23,31,37,41,43,47, 53,59,61,67,71,73, 79,83,89,97 Copyright © 2000 by Monica Yuskaitis

Copyright © 2000 by Monica Yuskaitis Credits Clipart from “Microsoft Clip Gallery” located on the Internet at http://cgl.microsoft.com/ clipgallerylive/default.asp Copyright © 2000 by Monica Yuskaitis