High Harmonics from Overdense Plasma Surfaces

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Relativistic Surface High Harmonic Generation
1 LOA-ENSTA. 2 3 For PW class laser, a contrast better than is required I ASE has to be < W/cm² The ASE intensity is enough to generate.
0 Relativistic induced transparency and laser propagation in an overdense plasma Su-Ming Weng Theoretical Quantum Electronics (TQE), Technische Universität.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
05/03/2004 Measurement of Bunch Length Using Spectral Analysis of Incoherent Fluctuations Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
Soft X-ray light sources Light Sources Ulrike Frühling Bad Honnef 2014.
kHz-driven high-harmonic generation from overdense plasmas
Nature of Light. Light Light can be modeled as a wave and a particle Transverse, electromagnetic wave Photons — particles of light.
Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied.
Generation of short pulses
EM Radiation Sources 1. Fundamentals of EM Radiation 2. Light Sources
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
1 A Grating Spectrograph for the LCLS Philip Heimann Advanced Light Source Observe the spontaneous radiation spectrum of the individual undulators Observe.
Lecture 3: Laser Wake Field Acceleration (LWFA)
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
Bremsstrahlung Temperature Scaling in Ultra-Intense Laser- Plasma Interactions C. Zulick, B. Hou, J. Nees, A. Maksimchuk, A. Thomas, K. Krushelnick Center.
Extreme Light Infrastructure Workshop – Bucharest - September, 17, 2008 Cosmin Blaga The Dawn of Attophysics - First Steps Towards A Tabletop Attosecond.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
07/27/2004XFEL 2004 Measurement of Incoherent Radiation Fluctuations and Bunch Profile Recovery Vadim Sajaev Advanced Photon Source Argonne National Laboratory.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
Dietrich Habs ELI Photonuclear Bucharest, Feb 2, D. Habs LMU München Fakultät f. Physik Max-Planck-Institut f. Quantenoptik A Laser-Accelerated.
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
S. Spampinati, J.Wu, T.Raubenhaimer Future light source March, 2012 Simulations for the HXRSS experiment with the 40 pC beam.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
R. Kupfer, B. Barmashenko and I. Bar
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
Relativistically oscillating plasma surfaces : High harmonic generation and ultrafast plasma dynamics Brendan Dromey ICUIL 26 Sept – 1 Oct Watkins Glen.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
Fast Electron Temperature Scaling and Conversion Efficiency Measurements using a Bremsstrahlung Spectrometer Brad Westover US-Japan Workshop San Diego,
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
Nonlinear optical effect in the soft x-ray region by two-photon ionization of He + Nonlinear optical effect in the soft x-ray region by two-photon ionization.
UCLA Positron Production Experiments at SABER Presented by Devon Johnson 3/15/06.
ELI-NP: The Way Ahead, Bucharest, March 2011 Modeling propagation of femtosecond laser pulses in ionized gas media Valer TOSA National Intitute for.
Results using atomic targets Suppression of Nonsequential ionization from an atomic ion target (comparison of double ionization of Ar and Ar + ). Determination.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
Saturation Roi Levy. Motivation To show the deference between linear and non linear spectroscopy To understand how saturation spectroscopy is been applied.
Free Electron Laser Studies
N. Kabachnik Institute of Nuclear Physics, Moscow State University
Betatron radiation sources
High Harmonic Generation from overdense plasma
New concept of light ion acceleration from low-density target
SUPA, Department of Physics, University of Strathclyde,
Interaction of Intense Ultrashort Laser Fields with Xe, Xe+ and Xe++
Studies of the energy transfer
Laboratoire d’Optique Appliquée
Wakefield Accelerator
Muhammed Sayrac Phys-689 Modern Atomic Physics Spring-2016
Two color FEL experiment
Control of laser wakefield amplitude in capillary tubes
1. Ionization of molecules - ( MO-ADK theory)
All-Optical Injection
Bi-plasma interactions on femtosecond time-scales
Peking University: Jinqing Yu, Ronghao Hu, Haiyang Lu & Xueqing Yan
X-Ray Spectrometry Using Cauchois Geometry For Temperature Diagnostics
Heating in short-pulse laser-driven cone- and nail-capped wire targets
Soft X-Ray pulse length measurement
Val Kostroun and Bruce Dunham
SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION
Gain Computation Sven Reiche, UCLA April 24, 2002
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

High Harmonics from Overdense Plasma Surfaces The oscillating mirror model Gordienko´s power law scaling Harmonics cut-off Attosecond pulses Experimental results

Few-cycle pulse: Density variation aL=3 φ=π/2

Solid harmonics with 1ω from ATLAS M. Zepf, G. Tsakiris, G.Pretzler, I. Watts et al., Phys. Rev. E, 58, R5253(1998)

Oscillating mirror model, 1D-PIC simulation Bulanov et al. Phys. Plas.1 (1993), P. Gibbon, Phys. Rev. Lett. 76, 50 (1996), von der Linde et al. PRA 52, 25 (1996) R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996) ncrit n(x,t) x t a=3, a=45, ne/nc=27 1D PIC simulations 1019 W/cm2 a= 3 harmonics 3 Gbar light pressure electrons ions

1D-PIC simulation predicts harmonics up to 100 R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996) In 5 x 1019 W/cm2 harmonic number a=6, a=45, ne/nc=27

PIC simulation shows w-5/2 power law spectrum S. Gordienko et al., Phys. Rev. Lett., 93, 115002(2004) LPIC simulation

Doppler shift at relativistic mirror A. Einstein, Annalen der Physik 17, 891 (1905) observer time moving mirror 7

Gordienko theory: Phys.Rev.Lett 93, 115002 (2004) n-th Fourier component of reflected E-field stationary points with at t = tn = 0 saddle point integration

first derivative of for mirror velocity retarded mirror time t´ n-th harmonic appears only if (same as in Compton backscattering !)

Second derivative and n -5/2 scaling b t´ bmax tmax bn

17. Problem: Derive w-5/2 scaling of harmonic spectrum Evaluate the Fourier components of the light reflected from a plasma surface having position X(t‘) at surface time t‘ = t + 2X(t‘)/c + t0 Make use of the saddle point method by determining the stationary points tn of the phase function, dF(tn)/dt=0, and obtain Show that the harmonics spectrum decays with harmonic number n according to Verify that the largest stationary point in this approach corresponds to the largest g value at which the surface moves towards the incident light and to a largest harmonic number nmax =4 gmax2.

Electron motion at mirror interface T. Baeva, S. Gordienko, A. Pukhov, Phys. Rev. E74, 046404 (2006) q mirror

Mirror emits attosecond flash Attosecond Flash and Spectral Cutoff T. Baeva, S. Gordienko, A. Pukhov, PRE 74, 046404 (2006), arXiv:physics/0604228 Mirror emits attosecond flash at t=t0 when pt =0 ! t0 Flash length Flash duration Cutoff frequency

Harmonic oscillation as seen from observer cut-off X(t‘) X(t)

The spectrum of the reflected wave

Surface Harmonics observed in new VULCAN Experiment B.Dromey, M.Zepf et al., Queens Univ. Belfast, to appear in Nature Physics (2006): High Harmonic Generation in the Relativistic Limit contrast > 1011:1 achieved by double plasma mirror IL > 1020 W/cm2 aL > 10

High Harmonic Generation in the Relativistic Limit VULCAN data confirm 5/2 power law down to water window B.Dromey, M.Zepf et al., Queens University Belfast, to appear in Nature Physics (2006) High Harmonic Generation in the Relativistic Limit w-5/2 contributions up to 850th harmonic oberserved

High Harmonic Generation in the Relativistic Limit B.Dromey, M.Zepf et al., Queens University Belfast, to appear in Nature Physics (2006) High Harmonic Generation in the Relativistic Limit

keV harmonics + the efficiency roll-over 10 1.5.5x1020 Wcm-2 2.5 .5x1020 Wcm-2 h~n-2.55 ±.2 1 Intensity/ /arb. units Normalised at 1200th order Intensity dependent roll-over 10-1 Harmonic efficiency n-2.55  Relativistic limit 10-2 1200 Order, n 3200 1.414KeV Photon Energy 3.767KeV I t FWHM 1’ ~ 500fs It’s still a pulse train Smooth spectrum due to lack of resolution

Roll over scaling confirmed as ~g3 Roll-over measurements 8g3 4g2 Vulcan 1996 highest observed 22 (6 1020Wcm-2m2) Roll over ~g3  10 keV pulse @ a0~30 (1021Wcm-2m2)

Filters produce clean attosecond pulses G.D.Tsakiris, K.Eidmann, J.Meyer-ter-Vehn, F.Krausz, New J.Phys. 8, 19 (2006)

Efficiency variation with intensity efficiency at saturation

3D-PIC simulation of surface harmonics with far-fiels M. Geissler, S. Rykovanov, G. Tsakiris, J. Meyer-ter-Vehn, NJP submitted (2007) Ne I y,z x,z (pol) 5-10th harm 5-10th harm

3D-PIC simulation of surface harmonics with far-fiels M. Geissler, S. Rykovanov, G. Tsakiris, J. Meyer-ter-Vehn, NJP submitted (2007) Ne I Harmonics spectrum y,z x,z (pol) 5-10th harm 5-10th harm y (mm) x (mm) Far-field transverse distribution 200 mm from target

Selected publications: R.Lichters, J. Meyer-ter-Vehn, A.Pukhov, Phys.Plasmas 3, 3425 (1996). M. Zepf, G.D. Tsakiris, G. Pretzler, I. Watts, et al., Phys. Rev. E 58, 5253 (1998). I. Watts, M. Zepf, e.L. Clark, et al., Phys. Rev. Lett. 88, 155001 (2002). S.Gordienko, A.Pukhov, O.Shorokhov, T.Baeva, Phys. Rev. Lett.93, 115002 (2004): G.D.Tsakiris, K.Eidmann, J.Meyer-ter-Vehn, F.Krausz, New J.Phys. 8, 19 (2006): Route to Intense Single Attosecond Pulses Th.Baeva, S.Gordienko, A.Pukhov, PRE 74, 065401 (2006): Relativistic plasma control for single attosecond pulse generation Th.Baeva, S.Gordienko, A.Pukhov, PRE 74, 046404 (2006) (2006) Theory of high harmonic generation in relativistic laser interaction etc. B.Dromey, M.Zepf, A. Gopal, K. Lancaster, M.S. Wie, K. Krushelnik, M.Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, Nature Physics, to appear (July 2006): High Harmonics Generation in the Relativistic Limit

Conclusions The mirror model and 1-D PIC simulations indicate that the plasma-vacuum interface constitutes an excellent medium for the generation of a harmonic comb at arbitrarily high intensities. At laser intensities of 1020 W/cm2 , 1-D PIC simulations predict a single attosecond pulse in the 20-70eV spectral range with duration of ~100as and few percent efficiency. Although no fundamental upper limit for the laser intensity is imposed by the non-linear process itself, technological limitations might be important.

Relativistic scaling pREL=2.5 Experimental data from Vulcan PW shows p=2.5.2 for a=10 HIGH EFFICIENCY 10-4@60 eV (17nm) 10-6@250eV (4nm) Extremely high photon numbers and brightness: 10131 photons 10231ph s-1mrad-2 (0.1%BW) Published: B. Dromey et al, Nature Physics, 2006

Angle from target normal/deg (Specular reflection 45º, incident -45º) Beamed keV harmonic radiation - demonstrates coherent keV radiation 1 0.8 0.6 X-ray Signal > 1 keV 4º FWHM Gaussian fit to beamed HHG signal 0.4 0.2 -100 50 0 50 100 150 specular Angle from target normal/deg (Specular reflection 45º, incident -45º) X-ray emission above 1keV and 3w is beamed into ~f/3 cone (laser also f/3) for nm rms roughness targets. No beaming observed for -shots with micron rms targets -shots without plasma mirrors

The efficiency for a power law spectrum Efficiency at saturation

Filtering different spectral ranges Plasma profile ramp l=0 time-domain frequency-domain filtered pulse

PW Field Synthesizer (PFS) project study (March 2005) 2 nJ seed 8 mJ amplified spectrum (OPCPA) 6.2 fs 1 TW pulse MPQ develops few-cycle pulses few J, < 10 fs, PW-range 2005 - 2008 F. Krausz, S. Karsch, et al. PW Field Synthesizer (PFS) project study (March 2005) 2 nJ seed

Filters produce clean attosecond pulses

The optimum filter for short pulses

Variation of the absolute phase

Surface Harmonics Literature R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Phys. Plasmas 3, 3425 (1996): Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, PRL 93, 115002 (2004): Relativistic Doppler Effect: Universal Spectra and Zeptosecond Pulses S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, PRL accepted (2005): Coherent Harmonic Focusing and the Light Extreme

measured harmonics spectrum critical surface motion (1D PIC) X(t´)

I ~ w -5/2 I ~ w -3 nmax = 4gmax2 long pulses discrete harmonics few-cycle pulses continuous spectrum cut-off harmonic nmax = 4gmax2 gmax peak mirror velocity