D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L

Slides:



Advertisements
Similar presentations
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
Advertisements

Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
Biochemical markers of type II collagen breakdown and synthesis are positioned at specific sites in human osteoarthritic knee cartilage  A.-C. Bay-Jensen,
Loss of extracellular matrix from articular cartilage is mediated by the synovium and ligament after anterior cruciate ligament injury  C.M. Haslauer,
Local gene delivery of heme oxygenase-1 by adeno-associated virus into osteoarthritic mouse joints exhibiting synovial oxidative stress  S. Kyostio-Moore,
Nociceptive phenotype alterations of dorsal root ganglia neurons innervating the subchondral bone in osteoarthritic rat knee joints  K. Aso, M. Izumi,
Alleviation of osteoarthritis by calycosin-7-O-β-d-glucopyranoside (CG) isolated from Astragali radix (AR) in rabbit osteoarthritis (OA) model  S.I. Choi,
2D and 3D MOCART scoring systems assessed by 9
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Microstructural alterations of femoral head articular cartilage and subchondral bone in osteoarthritis and osteoporosis  D. Bobinac, M. Marinovic, E.
Acute inflammation with induction of anaphylatoxin C5a and terminal complement complex C5b-9 associated with multiple intra-articular injections of hylan.
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Nociceptive phenotype alterations of dorsal root ganglia neurons innervating the subchondral bone in osteoarthritic rat knee joints  K. Aso, M. Izumi,
Histopathological subgroups in knee osteoarthritis
The groove model of osteoarthritis applied to the ovine fetlock joint
Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage  M. Rutgers, M.J.P. van Pelt, W.J.A. Dhert, L.B.
The chondroprotective effect of selective COX-2 inhibition in osteoarthritis: ex vivo evaluation of human cartilage tissue after in vivo treatment  T.N.
R.E. Fransès, D.F. McWilliams, P.I. Mapp, D.A. Walsh 
L.N. Nwosu, P.I. Mapp, V. Chapman, D.A. Walsh 
Effects of short-term gentle treadmill walking on subchondral bone in a rat model of instability-induced osteoarthritis  H. Iijima, T. Aoyama, A. Ito,
Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms.
Angiogenesis in two animal models of osteoarthritis
Differential expression of interleukin-17 and interleukin-22 in inflamed and non-inflamed synovium from osteoarthritis patients  C. Deligne, S. Casulli,
Different doses of strontium ranelate and mechanical vibration modulate distinct responses in the articular cartilage of ovariectomized rats  A.G.H. Mierzwa,
PGE2 signal via EP2 receptors evoked by a selective agonist enhances regeneration of injured articular cartilage  S. Otsuka, M.D., T. Aoyama, M.D., Ph.D.,
S. Kauppinen, S. S. Karhula, J. Thevenot, T. Ylitalo, L. Rieppo, I
Cross-sectional DXA and MR measures of tibial periarticular bone associate with radiographic knee osteoarthritis severity  G.H. Lo, A.M. Tassinari, J.B.
Angiogenic activity of subchondral bone during the progression of osteoarthritis in a rabbit anterior cruciate ligament transection model  M. Saito, T.
P. Orth, M. Cucchiarini, S. Wagenpfeil, M.D. Menger, H. Madry 
The innervation of synovium of human osteoarthritic joints in comparison with normal rat and sheep synovium  A. Eitner, J. Pester, S. Nietzsche, G.O.
Oral salmon calcitonin reduces cartilage and bone pathology in an osteoarthritis rat model with increased subchondral bone turnover  R.H. Nielsen, A.-C.
Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits  H. Chen, A. Chevrier,
The chemokine receptor CCR5 plays a role in post-traumatic cartilage loss in mice, but does not affect synovium and bone  K. Takebe, M.F. Rai, E.J. Schmidt,
Comparison of mouse and human ankles and establishment of mouse ankle osteoarthritis models by surgically-induced instability  S.H. Chang, T. Yasui, S.
The anti-NGF antibody muMab 911 both prevents and reverses pain behaviour and subchondral osteoclast numbers in a rat model of osteoarthritis pain  L.
Tenascin-C levels in synovial fluid are elevated after injury to the human and canine joint and correlate with markers of inflammation and matrix degradation 
D. A. Walsh, F. R. C. P. , Ph. D. , C. S. Bonnet, B. Sc. , E. L
Differences in structural and pain phenotypes in the sodium monoiodoacetate and meniscal transection models of osteoarthritis  P.I. Mapp, D.R. Sagar,
Perturbations in the HDL metabolic pathway predispose to the development of osteoarthritis in mice following long-term exposure to western-type diet 
A. Ludin, J.J. Sela, A. Schroeder, Y. Samuni, D.W. Nitzan, G. Amir 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Temporal and spatial migration pattern of the subchondral bone plate in a rabbit osteochondral defect model  P. Orth, M. Cucchiarini, G. Kaul, M.F. Ong,
Dietary fatty acids differentially affect the development of injury-induced osteoarthritis with diet-induced obesity in mice  C.-L. Wu, D. Jain, D. Little,
S.M. Hosseini, M.B. Veldink, K. Ito, C.C. van Donkelaar 
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
The role of subchondral bone resorption pits in osteoarthritis: MMP production by cells derived from bone marrow  A. Shibakawa, M.D., Ph.D., K. Yudoh,
Resistin is elevated following traumatic joint injury and causes matrix degradation and release of inflammatory cytokines from articular cartilage in.
Effects of a metalloproteinase inhibitor on osteochondral angiogenesis, chondropathy and pain behavior in a rat model of osteoarthritis  P.I. Mapp, D.A.
Observations of subchondral plate advancement during osteochondral repair: a histomorphometric and mechanical study in the rabbit femoral condyle  Y.-S.
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
M. Cucchiarini, H. Madry, E.F. Terwilliger 
On new bone formation in the pre-osteoarthritic joint
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Joint instability leads to long-term alterations to knee synovium and osteoarthritis in a rabbit model  C. Egloff, D.A. Hart, C. Hewitt, P. Vavken, V.
Spectrocolorimetric evaluation of human articular cartilage
Evidence to suggest that cathepsin K degrades articular cartilage in naturally occurring equine osteoarthritis  T. Vinardell, D.V.M., I.P.S.A.V., M.Sc.,
R. J. U. Lories, M. D. , Ph. D. , J. Peeters, B. Sc. , K. Szlufcik, Ph
The effects of alendronate in the treatment of experimental osteonecrosis of the hip in adult rabbits  J.G. Hofstaetter, M.D., J. Wang, M.D., Ph.D., J.
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
H.L. Reesink, A.E. Watts, H.O. Mohammed, G.D. Jay, A.J. Nixon 
Increased presence of cells with multiple elongated processes in osteoarthritic femoral head cartilage  I. Holloway, M. Kayser, D.A. Lee, D.L. Bader,
Bone loss at subchondral plate in knee osteoarthritis patients with hypertension and type 2 diabetes mellitus  C.Y. Wen, Y. Chen, H.L. Tang, C.H. Yan,
Surgical induction, histological evaluation, and MRI identification of cartilage necrosis in the distal femur in goats to model early lesions of osteochondrosis 
T. Silvestri, M. D. , L. Pulsatelli, Ph. D. , P. Dolzani, Ph. D. , A
Identification of opticin, a member of the small leucine-rich repeat proteoglycan family, in human articular tissues: a novel target for MMP-13 in osteoarthritis 
K.L. Caldwell, J. Wang  Osteoarthritis and Cartilage 
H. -G. Wisniewski, E. Colón, V. Liublinska, R. J. Karia, T. V
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Lymphatic vessels in osteoarthritic human knees
Presentation transcript:

Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis  D.A. Walsh, F.R.C.P., Ph.D., C.S. Bonnet, B.Sc., E.L. Turner, B.Sc., D. Wilson, M. Situ, B.Med.Sci., D.F. McWilliams, Ph.D.  Osteoarthritis and Cartilage  Volume 15, Issue 7, Pages 743-751 (July 2007) DOI: 10.1016/j.joca.2007.01.020 Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 1 Vascularisation of non-calcified cartilage and synovium in OA compared with PM controls. (A) Vascular channel surrounded by a bone cuff breaching the tidemark and entering the non-calcified cartilage in a patient with OA. Note duplication of tidemark. (B) Vascular channel in the calcified cartilage of a PM control. (C, D) CD34-positive ECs (red fluorescence) within vascular channels of preparations shown in A & B respectively. (E) Vascular channel breaching the tidemark in another patient with OA, showing bone cuff (green) and adjacent depleted proteoglycan (loss of pink stain). (F) Vascular channel within the calcified cartilage of a PM control. (G) CD31-immunoreactive endothelium (red) displaying proliferating nuclei (black) in synovium from a patient with OA. Note the abnormally high vascularity distant from the synovial lining. (H) Synovium from a PM control displaying the normal high density of vessels adjacent to the synovial lining, but few Ki67-positive proliferating nuclei. (A, B) Autofluorescent images under ultraviolet light. (C, D) Red immunofluorescence for CD34. (E, F) Safranin-O and fast green stain. (G, H) Double sequential immunohistochemsitry for CD31 (red) and Ki67 antigen (black). NCC: non-calcified cartilage, CC: calcified cartilage, Bo: bone. Short arrows indicate tidemarks. *Indicates vessel lumen. Long arrows indicate proliferating nuclei within ECs. Arrowheads indicate synovial lining. Scale bars are 100μm. Osteoarthritis and Cartilage 2007 15, 743-751DOI: (10.1016/j.joca.2007.01.020) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 2 Angiogenesis, radiological, clinical and inflammation indices compared between patients with OA and PM controls, alongside subgroups of OA with and without CC. (A) Osteochondral vascular density in the non-calcified articular cartilage was higher in patients with OA (median=0.13, IQR 0.0–0.25) than PM controls (median=0.0, IQR 0.0–0.03) (Z=−2.1, P=0.03). (B) Synovial EC proliferation was higher in patients with OA (median 2.2%, IQR 1.0–5.8%) than in PM (median 0.1%, IQR 0.0–0.7%) (Z=−4.7, P<0.001). (C) Synovial vascular densities were similar in all disease groups. (D) Histological cartilage severity score was higher in OA (median 7, IQR 6–9.3) than in PM controls (median=5.0, IQR 3.5–6.5) (Z=−3.4, P=0.001). (E–G) JSN, OST and clinical disease activity scores in surgical samples. OST score was higher in osteoarthritic patients with CC (median=8, IQR 5.8–10) than in those without CC (median=8, IQR 4–8) (Z=−2.0, P=0.045). (H) Macrophage infiltration was higher in OA (median=9.7%, IQR 6.3–13.0%) than PM controls (median=4.3%, IQR 2.3–5.3%) (Z=−3.7, P<0.001) (I) Inflammation grade was higher in patients with OA (median=2, IQR 1–3) than PM controls (median=0, IQR 0–1) (Z=−5.1, P<0.001). Angiogenesis, clinical and inflammation indices in OA did not differ significantly between patients with and those without CC. Box and whisker plots showing median, IQR and range. Osteoarthritis and Cartilage 2007 15, 743-751DOI: (10.1016/j.joca.2007.01.020) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 3 Osteochondral vascularisation and histological, radiological and clinical OA scores. (A) Osteochondral vascular density increased with increasing histological cartilage score (r=0.26, P=0.049). (B, C) Associations between osteochondral vascular density and radiological OA severity (JSN and OST scores) did not reach statistical significance. (D) Osteochondral vascular density increased with increasing clinical score (r=0.41, P=0.009). Scatter plots of data from patients with OA (○) and PM controls (▴). Osteoarthritis and Cartilage 2007 15, 743-751DOI: (10.1016/j.joca.2007.01.020) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 4 Osteochondral and synovial vascularisation and synovial inflammation. (A, D) Osteochondral vascular density was not significantly associated with synovial inflammation grade (A) or synovial macrophage infiltration (D). (B, E) Synovial EC proliferation increased with increasing inflammation grade (B, r=0.59, P<0.001), and with increasing synovial macrophage infiltration (E, r=0.54, P<0.001). (C) Synovial EC fractional area increased with increasing inflammation grade (C, r=0.42, P=0.002). (F) Synovial EC fractional area vs macrophage infiltration. Scatter plots of data from patients with OA (○) and PM controls (▴). Osteoarthritis and Cartilage 2007 15, 743-751DOI: (10.1016/j.joca.2007.01.020) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions

Fig. 5 Osteochondral and synovial vascularisation. Osteochondral vascular density was not significantly associated with synovial EC proliferation (A) and synovial EC fractional area (B). Scatter plots of data from patients with OA (○) and PM controls (▴). Osteoarthritis and Cartilage 2007 15, 743-751DOI: (10.1016/j.joca.2007.01.020) Copyright © 2007 Osteoarthritis Research Society International Terms and Conditions