Wavelength tunability in whispering gallery mode resonators

Slides:



Advertisements
Similar presentations
Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
Advertisements

Parametric Down-conversion and other single photons sources December 2009 Assaf Halevy Course # 77740, Dr. Hagai Eisenberg 1.
Integrated High Order Filters in AlGaAs Waveguides with up to Eight Side-Coupled Racetrack Microresonators Rajiv Iyer ‡, Francesca Pozzi †, Marc Sorel.
Direct Frequency Comb Spectroscopy for the Study of Molecular Dynamics in the Infrared Fingerprint Region Adam J. Fleisher, Bryce Bjork, Kevin C. Cossel,
The feasibility of Microwave- to-Optical Photon Efficient Conversion By Omar Alshehri Waterloo, ON Fall 2014
Limits and Interfaces in Sciences / Kumboldt-Kolleg São Paulo-SP,
Self-Guided Operation of Green-Pumped Singly Resonant
Optimizing SHG Efficiency
Positronium Rydberg excitation in AEGIS Physics with many positrons International Fermi School July 2009 – Varenna, Italy The experimental work on.
Optical Field Mixing. Oscillating Polarisation Optical polarisation Fundamental polarisation SH Polarisation Constant (dc) polarisation.
Slow light in photonic crystal waveguides Nikolay Primerov.
Next generation nonclassical light sources for gravitational wave detectors Stefan Ast, Christoph Baune, Jan Gniesmer, Axel Schönbeck, Christina Vollmer,
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
Dual Sphere Detectors by Krishna Venkateswara. Contents  Introduction  Review of noise sources in bar detectors  Spherical detectors  Dual sphere.
Niels Bohr Institute Copenhagen University Eugene PolzikLECTURE 5.
Single photon sources. Attenuated laser = Coherent state Laser Attenuator Approximate single photon source Mean number of photon per pulse.
Analysis of quantum entanglement of spontaneous single photons
1 Coherent processes in metastable helium at room temperature Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker Laboratoire Aimé Cotton, Orsay, France.
All-Fiber Optical Parametric Oscillator (FOPO) Chengao Wang.
White Light Cavity Ideas and General Sensitivity Limits Haixing Miao Summarizing researches by several LSC groups GWADW 2015, Alaska University of Birmingham.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experimental Characterization of Frequency Dependent Squeezed Light R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, N. Lastzka, and K. Danzmann.
Generation and Control of Squeezed Light Fields R. Schnabel  S.  Chelkowski  A.  Franzen  B.  Hage  H.  Vahlbruch  N. Lastzka  M.  Mehmet.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
Optical Subcarrier Generation Long Xiao 03/12/2003.
Enhanced LIGO with squeezing: Lessons Learned for Advanced LIGO and beyond.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Eighth Edoardo Amaldi Conference on Gravitational Waves Sheon Chua, Michael Stefszky, Conor Mow-Lowry, Daniel Shaddock, Ben Buchler, Kirk McKenzie, Sheila.
Itoh Lab. M1 Masataka YASUDA
Frequency Dependent Squeezing Roadmap toward 10dB
S. ChelkowskiSlide 1WG1 Meeting, Birmingham 07/2008.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Precision Laser Spectroscopy of H 3 + Hsuan-Chen Chen 1, Jin-Long Peng 2, Takayoshi Amano 3,4, Jow-Tsong Shy 1,5 1 Institute of Photonics Technologies,
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
1 NONLINEAR INTERFEROMETER FOR SHAPING THE SPECTRUM OF BRIGHT SQUEEZED VACUUM Maria Chekhova Max-Planck Institute for the Science of Light, Erlangen, Germany.
Carmen Porto Supervisor: Prof. Simone Cialdi Co-Supervisor: Prof. Matteo Paris PhD school of Physics.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Solar chameleon detection at CAST Part II: The optical resonator Sauman Cheng and Manwei Chan.
§8.4 SHG Inside the Laser Resonator
Single-photon single-ion interaction in front of a parabolic mirror Magdalena Stobińska, Robert Alicki, Gerd Leuchs Erlangen-Nürnberg University Max Planck.
Generation of intense few-cycle pulses from the visible to the mid-IR Josh Nelson 1 Danny Todd 2 Adam Summers 3 Derrek Wilson 3 Dr. Carlos Trallero 3 1.
ENTANGLED BRIGHT SQUEEZED VACUUM
Four wave mixing in submicron waveguides
Interferometer configurations for Gravitational Wave Detectors
Work package 3: Materials for energy
Beryllium ions in segmented Paul trap
Detuned Twin-Signal-Recycling
J.Kalkman, A.Tchebotareva, A.Polman, T.J.Kippenberg,
Mingyun Li & Kevin Lehmann Department of Chemistry and Physics
PHySES Positronium Hyperfine Structure of the first Excited State:
Single and dual wavelength Er:Yb double clad fiber lasers
Progress toward squeeze injection in Enhanced LIGO
Remote tuning of an optical resonator
Light Waves and Polarization
Two-Photon Absorption Spectroscopy of Rubidium
Squeezed states in GW interferometers
High Power, Uncooled InGaAs Photodiodes with High Quantum Efficiency for 1.2 to 2.2 Micron Wavelength Coherent Lidars Shubhashish Datta and Abhay Joshi.
Stabilizing the Carrier-Envelope Phase of the Kansas Light Source
Slow light in Photonic Crystals
Self-injection linear polarization locking of a fiber laser
Squeezed Input Interferometer
A Generalized Method for Calculating Phase Matching Conditions in Biaxial Crystals Guangwen Huo Xijing University China July.
Photon Physics ‘08/’09 Thijs Besseling
Squeezed Light Techniques for Gravitational Wave Detection
Department of photonics, National Cheng Kung University
High harmonic generation in a large-volume capillary for seeding of free-electron lasers Siew Jean Goh.
Advanced Optical Sensing
Fiber Laser Part 1.
Chirped pulse amplification
Presentation transcript:

Wavelength tunability in whispering gallery mode resonators Gerhard Schunk, Michael Förtsch, Josef Fürst, Dmitry Strekalov, Florian Sedlmeir, Harald Schwefel, Christoph Marquardt and Gerd Leuchs Max Planck Institute for the Science of Light, Institute for Optics, Information and Photonics, University Erlangen-Nuremberg, Erlangen, Germany Summer School on Quantum and Non-Linear Optics 2012

I. Whispering gallery mode (WGM) resonators ACOUSTICS OPTICS ring down timesup to  > 100 s bandwidth  < 10 kHz @ 1.55 m Savchenkov et al., Opt.Express, 15, 6768 (2007)  controllable bandwidth via coupling small mode volume broad transparency window B. Matsko and V. S. Ilchenko, IEEE J. Sel. Topics, vol. 12, no. 1, pp. 3–32 (2006) efficient propagation of acoustic waves

APPLICATIONS IN GENERAL I. Whispering gallery mode (WGM) resonators APPLICATIONS IN GENERAL narrowband photonic cavities (e.g. for filtering) sensors (e.g., bio-sensing, temp., pressure, ...) optical parametric oscillators (OPO) ... APPLICATIONS IN ERLANGEN Terahertz conversion, H. Schwefel group bio-sensing, F. Vollmer group three wave mixing in lithium niobate naturally phase-matched OPO, J. U. Fürst et al., PRL 104, 153901 (2010) and PRL 105, 263904 (2010) single-mode and two-mode squeezing, J. U. Fürst et al., PRL 106, 113901 (2011) single photon source, http://arxiv.org/pdf/1204.3056.pdf, submitted 2012 Optical Resonator Biosensors: Molecular Diagnostic and Nanoparticle Detection on an Integrated Platform (M. Baaske, F. Vollmer), In ChemPhysChem, Wiley Online Library, volume 13, 2012. [bib] [pdf]

I. Whispering gallery mode (WGM) resonators Maxwell equations yield eigenmodes with mode numbers q,l,m P. Debye, Ann. Physik, 30, 57 (1909) [1] spherical harmonics Ylm in angular directions l-m = 0 l-m = 1 l = 10 spherical Bessel functions Jl in radial direction M. Ornigotti, Phys. Rev. A 84, 013828 (2011)

II. Parametric down conversion in WGM resonators energy conservation phase matching one pump photon generates one signal and one idler photon

OVERLAP INTEGRAL II. Parametric down conversion in WGM resonators radial part angular part νs = ls –ms qi qs νi = li –mi Pth = 6.7 µW demonstrated J. U. Fürst et al., PRL 105, 263904 (2010) phase matching depends on spatial overlap fundamental modes (q=1, l-m = 0) overlap best

heralded signal-signal corr. II. Parametric down conversion in WGM resonators SINGLE PHOTON SOURCE VIA SPDC λidler= 1020 nm λsignal = 1120 nm heralded signal-signal corr. http://arxiv.org/pdf/1204.3056.pdf, submitted 2012 signal-idler corr.

III. Setup and experiment 532 nm WGM resonator is a 4.8 % MgO-doped z-cut lithium niobate crystal typ I phase matching (eoo) controlled via bias voltage and temperature no active locking

wavelength tuning over 100 nm and mode-hop free tuning over 150 MHz! III. Setup and experiment first demonstation of tunability of our system: http://arxiv.org/pdf/1204.3056.pdf, submitted 2012 wavelength tuning over 100 nm and mode-hop free tuning over 150 MHz!

TEMPERATURE TUNING IV. Recent results T = 96,8°C λidler= 810 nm WGR λidler= 810 nm 1405 nm 1550 nm OSA measurement

FURTHER TUNING PARAMETERS IV. Recent results FURTHER TUNING PARAMETERS reducing disk size changing Mg concentration demonstration of coupling to a radius = 0.3 mm disk

V. Summary and Outlook SUMMARY PDC in WGM resonators is tunable over more than 300 nm demonstration of PDC up to λsignal=1540 nm and λidler = 812 nm fabrication and coupling to small discs (e.g. r = 0.3 mm) THANK YOU Outlook investigate the whole parameter space of tuning couple this single photon source to other quantum systems (quantum dots, atomic clouds, optomechanical resonators, etc.)