Yu. Kulchitsky, N. Rusakovich: JINR, Dubna

Slides:



Advertisements
Similar presentations
Modern Physics By Neil Bronks Atoms C 12 6 Mass Number Mass Number - Number of protons + Neutrons. Atomic Number Atomic Number - Number of protons In.
Advertisements

Peter Schleper, Hamburg University SUSY07 Non-SUSY Searches at HERA 1 Non-SUSY Searches at HERA Peter Schleper Hamburg University SUSY07 July 27, 2007.
The Standard Model and Beyond [Secs 17.1 Dunlap].
Modified Moliere’s Screening Parameter and its Impact on Calculation of Radiation Damage 5th High Power Targetry Workshop Fermilab May 21, 2014 Sergei.
Searching for Magnetic Monopoles
Детектори - II 4-ти курс УФЕЧ Спирачно лъчение (bremsstrahlung) Z 2 electrons, q=-e 0 M, q=Z 1 e 0 A charged particle of mass M and charge q=Z.
Particle interactions and detectors
1 Analysis of Prompt Diphoton Production at the Large Hadron Collider. Andy Yen Mentor: Harvey Newman Co-Mentors: Marat Gataullin, Vladimir Litvine California.
THE SEARCH FOR THE HIGGS BOSON Aungshuman Zaman Department of Physics and Astronomy Stony Brook University October 11, 2010.
January 23, 2001Physics 8411 Elastic Scattering of Electrons by Nuclei We want to consider the elastic scattering of electrons by nuclei to see (i) how.
MAGNETIC MONOPOLES Andrey Shmakov Physics 129 Fall 2010 UC Berkeley.
Nailing Electroweak Physics (aka Higgs Hunting) with the Next Linear Collider Bob Wilson High Energy Physics Group CSU Physics Research Evening November.
Particle Interactions
LESSON 4 METO 621. The extinction law Consider a small element of an absorbing medium, ds, within the total medium s.
The Big Bang, the LHC and the Higgs Boson Dr Cormac O’ Raifeartaigh (WIT)
Interaction of light charged particles with matter Ionization losses – electron loss energy as it ionizes and excites atoms Scattering – scattering by.
ROY, D. (2011). Why Large Hadron Collider?. Pramana: Journal Of Physics, 76(5), doi: /s
Particle Physics J4 Leptons and the standard model.
XII International School-seminar “The Actual Problems of Microworld Physics” July 22 – August 2, 2013, Gomel, Belarus Vacuum polarization effects in the.
August 22, 2002UCI Quarknet The Higgs Particle Sarah D. Johnson University of La Verne August 22, 2002.
P Spring 2003 L12Richard Kass The properties of the Z 0 For about ten years the Z 0 was studied in great detail at two accelerator complexes: LEP.
Electroweak Theory Mr. Gabriel Pendas Dr. Susan Blessing.
Lecture 1.3: Interaction of Radiation with Matter
School of Arts & Sciences Dean’s Coffee Presentation SUNY Institute of Technology, February 4, 2005 High Energy Physics: An Overview of Objectives, Challenges.
Physics Modern Lab1 Electromagnetic interactions Energy loss due to collisions –An important fact: electron mass = 511 keV /c2, proton mass = 940.
LOGO B. I. Stepanov Institute of Physics National Academy of Sciences of Belarus.
Search for a Z′ boson in the dimuon channel in p-p collisions at √s = 7TeV with CMS experiment at the Large Hadron Collider Search for a Z′ boson in the.
Quest for omega mesons by their radiative decay mode in √s=200 GeV A+A collisions at RHIC-PHENIX ~Why is it “Quest”?~ Simulation Study Real Data Analysis.
1 dE/dx  Let’s next turn our attention to how charged particles lose energy in matter  To start with we’ll consider only heavy charged particles like.
Monday, Oct. 16, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #11 Monday, Oct. 16, 2006 Dr. Jae Yu 1.Energy Deposition in Media Total Electron.
P ARTICLE D ETECTORS Mojtaba Mohammadi IPM-CMPP- February
A Direct Search for Magnetic Monopoles at H1 HEP03, Aachen, 17-23/7/03 David Milstead The University of Liverpool.
Introduction to CERN Activities
The Higgs Boson Observation (probably) Not just another fundamental particle… July 27, 2012Purdue QuarkNet Summer Workshop1 Matthew Jones Purdue University.
Andrea Linville Office of Science, SULI Program 2009 Stanford Linear Accelerator August 13, 2009.
ELECTROWEAK UNIFICATION Ryan Clark, Cong Nguyen, Robert Kruse and Blake Watson PHYS-3313, Fall 2013 University of Texas Arlington December 2, 2013.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
Search for a Standard Model Higgs Boson in the Diphoton Final State at the CDF Detector Karen Bland [ ] Department of Physics,
Joint Institute of the Nuclear Research B.I. Stepanov Institute of Physics of the National Academy of Sciences S. Harkusha, Yu. Kulchickii, Yu. Kurochkin,
Higgs in the Large Hadron Collider Joe Mitchell Advisor: Dr. Chung Kao.
Some remarks on Higgs physics The Higgs mechanism Triviality and vacuum stability: Higgs bounds The no-Higgs option: strong WW scattering These are just.
Fourth Generation Leptons Linda Carpenter April 2011.
Wednesday, Mar. 2, 2005PHYS 3446, Spring 2005 Jae Yu 1 PHYS 3446 – Lecture #11 Wednesday, Mar. 2, 2005 Dr. Jae Yu 1.Energy Deposition in Media Photon energy.
PHYS 3446 – Lecture #13 Energy Deposition in Media
PHYS 3446 – Lecture #11 Energy Deposition in Media Particle Detection
Nady Bakhet PhD Student – Cairo University PhD Thesis Title
PHYS 3313 – Section 001 Lecture #12
Methods of Experimental Particle Physics
Frank Deppisch, Ralph Engel, Paolo Lipari, James Pinfold
Monopoles The Mystery.
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
Section VI - Weak Interactions
Searching for Magnetic Monopoles
P Spring 2002 L13 Richard Kass The properties of the Z0
PHYS 3313 – Section 001 Lecture #12
Gamma Ray Emission Mechanisms
Predicting “Min-Bias” and the “Underlying Event” at the LHC
Methods of Experimental Particle Physics
Particle Detection 1. Costituents of Matter 2. Fundamental Forces
SUSY SEARCHES WITH ATLAS
Weak interactions.
PHYS 3446 – Lecture #14 Wednesday,March 7, 2012 Dr. Brandt
PHYS 3446, Spring 2012 Andrew Brandt
PHYS 3446 – Lecture #17 Particle Detection Particle Accelerators
PHYS 3446 – Lecture #18 Monday ,April 9, 2012 Dr. Brandt Calorimeter
American Physical Society
Can new Higgs boson be Dark Matter Candidate in the Economical Model
PHYS 3446 – Lecture #13 Energy Deposition in Media
PHYS 3446 – Lecture #14 Energy Deposition in Media Particle Detection
b-Quark Production at the Tevatron
Presentation transcript:

Yu. Kulchitsky, N. Rusakovich: JINR, Dubna The state of the proposals for search of the magnetic monopoles on LHC at the ATLAS project Yu. Kurochkin, I. Satsunkevich, Dz. Shoukavy: B.I. Stepanov Institute of Physics, Minsk Yu. Kulchitsky, N. Rusakovich: JINR, Dubna

e g = n ħc/2, n=0,±1,±2,… (P.A.M. Dirac, 1931) Introduction WHY does quantisation of the electric charge exist? In 1931 Dirac showed that the existence of single magnetic monopole with magnetic charge g explained the quantization of electric charge e in terms of the Dirac quantization condition e g = n ħc/2, n=0,±1,±2,… (P.A.M. Dirac, 1931) Besides explaining the quantization of electric charge, the existence of magnetic charges restores the symmetry of the Maxwell’s equations Thus, existence of both electric and magnetic charge in the universe requires charge quantization. Since the quantization of electric charge in nature is well established but still mysterious, the discovery of just a single monopole would provide a much wanted explanation.

Introduction New situation was created in 1974 after work's Polyakov and 'tHooft in which they demonstrated monopole solutions in the SO(3) Georgi-Glashow model. Later it was discovered that any scheme of Grand Unification with an electromagnetic U(1) subgroup embedded into a semi-simple gauge group, which became spontaneously broken by Higgs mechanism, possessed monopole solutions inevitably. The monopoles of the usual Grand Unification have a mass of the order of the unification scale 1017 GeV and therefore cannot be discovered at the current or future accelerators. They could only be produced in the first instants of our Universe and can be searched for in the penetrating cosmic radiation. However, there are models of the Grand Unification where the electroweak symmetry breaking can give rise to monopoles of mass ~ 1 - 15 TeV. It was shown that the unification scale could be significantly lowered through appearance of extra dimensions. Thus, in the some models of the Grand Unification the monopoles of masses which can be produced at LHC energies.

The most recent limits on the monopole mass Tevatron p p – collisions Experiment E-882 (Al) |n|=1, M > 285 GeV (Al) |n|=2, M > 355 GeV (Be) |n|=3, M > 325 GeV (Be) |n|=6, M > 420 GeV LEP 2 e+ e- - collisions HERA e+ p – collisions |n|=1,2,3,6 45 GeV < M < 102 GeV (Al) M > 140 GeV Drell- Yan production CDF Run II M > 360 GeV

Differential cross section The production γγ via virtual monopole loop (I. Ginsburg) Published estimation for monopole mass limit from this mechanism has difficulties with unitarity. Differential cross section Cross section If the cross section were dominated by a single partial wave of angular momentum J, the cross section would be bounded by Unitarity relation Comparing this with the our cross section, we obtain that this cross section violates unitarity relation.

Differential cross section Differential cross section Monopole production By a Dirac monopole we mean a particle without electric charge or hadronic interactions and with magnetic charge g satisfying the Dirac quantization condition. Going from lepton to monopole production we replace e gβ Two photon s=1/2 Drell-Yan Differential cross section Differential cross section When we make duality substitution e gβ the Drell-Yan model satisfy the unitarity relation up to n≈3 Therefore, we need to use n=3 cross section as the unitarity limit for all n>3 As it follows from differential cross section we have all partial waves for two photon production. Thus, we have no any contradiction with unitarity for γγ processes.

Cross section The comparison production cross-section for γγ fusion and Drell-Yan for monopole-antimonopole pair in pp-collisions at √s=14 TeV “On production of magnetic monopoles via photon-photon fusion at high energy pp collisions”, Yu.Kurochkin,I.Satusunkevich,Dz.Soukavy and Yu. Kulchitsky, N. Rusakovich Modern Physics Letters A,vol.21,No.38(2006) So, γ γ production is the leading mechanism for direct monopole searches at LHC

Pythia Modified The coupling constant was redefined in pysgwz.F Pythia was setup to produce heavy muons through the modified Drell-Yan process no initial state shower no final state shower no multiple interactions no hadronization The coupling constant was redefined in pysgwz.F FACZ=4D0*COMFAC*3D0 c DGDG: change coupling constant ALEM = SQRT(1.-4.*PMAS(13,1)*PMAS(13,1)/VINT(44))/2. print*,"ALEM = ",ALEM HP0=ALEM/3D0*SH HP1=ALEM/3D0*XWC*SH DO 100 I=MMINA,MMAXA IF(I.EQ.0.OR.KFAC(1,I)*KFAC(2,-I).EQ.0) GOTO 100 This code was added in Generators/Pythia_i/src/PythiaModified

Beta monopole 1 2 3 Beta Region MM b Energy Loss 1 Very Slow < 10-4 Magnetic Monopoles Searches G.Giacomelli, L.Patrizii, Feb 2003 Region MM b Energy Loss 1 Very Slow < 10-4 Lose energy in elastic collisions with atoms or nuclei 2 Slow 10-4<b<10-2 Ionization or excitation of the atoms 3 Fast >10-2 Ionization: Behaves like a electric charge with e=g b

Comparison Eta and Phi monopoles-muons muons with mass of 500GeV Magnetic monopoles with mass 500 GeV Dz. Shoukavy In. Ph. Minsk, Dubna; D. Goldin, A. Firan, J. Ye, R. Stroynowski: SMU, Dallas

How can we search monopole at LHC? If magnetic monopole produced in ATLAS then monopole would be revealed by its unique characteristic. Transition Radiation The large value of a magnetic charge means that ionization energy losses will be several orders of magnitude greater for monopoles than for electrically charged particle. Trapped magnetic monopoles can be draft by the magnetic field and further registered.

For monopole we make the replacement Transition Radiation As in АTLAS there is a detector of transitive radiation, then we have additional opportunity for monopole search. The energy radiated when a particle with charge ze crosses the boundary between vacuum and a medium plasma frequency ωp is The typical emission angle ~ 1/γ. For a particle with γ=103 the radiated photons are in the soft x-ray range 2 to 20 keV. The number of radiated photons For monopole we make the replacement Thus, for monopole will be some tens times more radiated photons

Energy loss by ionization The energy loss dE/dx due to ionization for an electrically charged particle is given the Bethe-Bloch formula is the mean excitation energy of the scattering material For magnetic monopoles with velocities β≥0.1 just we need make the replacement The energy loss dE/dx due to ionization does not depended on the mass of the incident particle but just its kinematic properties For velocities β<0.01 we need to use the next approximation for all materials

Monte Carlo Simulation-Recent work The behavior of the magnetic monopole inside the Atlas detector will be similar with the one of a massive, neutral particle that interacts with matter via ionization using a modified Bethe-Block formula. The magnetic monopole was implemented in this manner in Geant4 by Mr. Vladimir Ivantchenko and Andrea dell’ Acqua Now there is a work on addition G4 example for a magnetic monopole to current release Athena 14.5.0

Future plans The creation of Monte-Carlo generator for two-photon monopole production The estimation is the detector efficiency and trigger efficiency

Some articles and talks: 1. Yu. Kurochkin, I. Satsunkevich, Dz. Shoukavy and N. Rusakovich, Yu. Kulchitsky. On production of magnetic monopoles via γγ fusion at high energy pp collisions // Mod. Phys. Lett. A, Vol. 21, No. 38 (2006) pp. 2873-2880. 2. Yu.A. Kurochkin, Yu. Kulchitsky, V.V. Makhnatch, N.A. Rusakovich, I.S. Satsunkevich, Dz.V. Shoukavy. Modern status of magnetic monopoles. Methods of Non-Euclidean Geometry in Modern Physics. Proc. of V Intern. Conf. “Bolyai-Gauss-Lobachevsky (BGL-5)” , Minsk 2006, p. 349-358 3. Yu. Kurochkin, I. Satsunkevich, Dz. Shoukavy and N. Rusakovich, Yu. Kulchitsky. Monopoles at ATLAS // Proc. of the International school-seminar “The actual problems of microworld physics” (Gomel, Belarus July 23-August 3, 2007), Dubna, JINR, Russia, 2008, Vol.1, P. 104-111. 4. A. Firan, A. Dell’ Acqua, D. Goldin, V. Ivantchenko, Dz. Shoukavy, R. Stroynowski, J. Ye – Search for magnetic monopoles using ATLAS detector // ATLAS Notes. 5. Yu. Kurochkin, I. Satsunkevich, Dz. Shoukavy and N. Rusakovich, Yu. Kulchitsky. Monopoles in ATLAS. Problems of the Theory and peculiarities of the experimental searchю Proc. of XV Intern. Ann. Seminar NPCS’2008 (Minsk, Sosny, May 2008). 6. Yu. Kurochkin, I. Satsunkevich, Dz. Shoukavy - Modern status of magnetic monopoles and the prospects of their search at LHC. // Proc. of the Natl. Academy of Sciences of Belarus, Ser. Phys.-Math. Sci. - 2008, No.2. - P. 68-72.

Problems Коллобарация Geant (конкретно - Иванченко) создала пример, который позволяет оценивать потери энергии за счет ионизации магнитным монополем при его прохождение в веществе. В области β≥0.1 используется формула Алена (Rev.Mod.Phys 52.(1980), 121), а области β<0.01 приближенная формула, которая не зависит от материала, а только от заряда и скорости магнитного монополя Данный пример был добавлен в geant4.9.0 ref01. С помощью UserPhysicsDefinition.h был сконструирован магнитный монополь, как объект массой 350 ГэВ и магнитным зарядом g=38.5e . До недавнего времени ATHENA использовала geant 4.8.3. Данное обстоятельство не позволяло использовать монопольный скрипт, созданный коллобарацией Geant. Для устранения этой проблемы  Andrea Dell'Acqua создал монопольную библиотеку. Однако пока не удалось добиться приемлемых результатов. А конкретно вызывает сомнеие, как проходила стадия симуляции – слишком быстро, что наводило на мысль что, что-то тут не ладно. В отличие от Д. Шелкового группа из Даласса утверждает, что им удалось добиться того, что Athena версия 12.0.6 работает удовлетворительно с монопольной библиотекой. 3 Декабря вышел релиз Athena 14.5.0 который использует Geant 4.9.1, что как мы надеемся позволить нам оценить потери энергии магнитным монополем при его прохождении детектора ATLAS, без учета ускорения монополя в магнитном поле детектора.