Navigation Astronomy – the science that deals with observation and understanding of relative and apparent motion of stars, planets, moon and sun. Navigational.

Slides:



Advertisements
Similar presentations
Every star, cluster, nebula, galaxy,
Advertisements

Plotting Celestial LOPs
Junior Navigation Chapter 4
The Sun in the Sky And how it changes in the course of the year.
Astronomy 305 Exam Topics Exam I – Star Charts
Navigating by the Stars and Planets Presented to: Chagrin Valley Astronomical Society September 1, 2012 By Ron Baker, CVAS member (Finding your location.
LESSON 21: Celestial Applications Learning Objectives:Learning Objectives: –Know the information that can be obtained from the practice of celestial navigation.
Apparent/Actual Motions Summary
Meridian Transit.
The Earth Rotates.
Karen Meech Institute for Astronomy TOPS 2003
An Earth Day Sidereal Day: 23 hr 56 min 4 sec Motion relative to background stars Mean Solar Day: 24 hours The average time between meridian crossings.
PHY134 Introductory Astronomy
Patterns in the Sky (cont)
1 Quiz Q & A Junior Navigation Chapter 9 Meridian Transit of the Sun.
1 Homework Q & A Junior Navigation Chapter 9 Meridian Transit of the Sun.
ASTR211 EXPLORING THE SKY Coordinates and time Prof. John Hearnshaw.
1 NavigationNavigation. 2 Chapter 6 Sight Planning NavigationNavigation.
1 NavigationNavigation. 2 Line of Position (LOP) using the Sun from run of at least three qualified sights Line of Position (LOP) using the Moon from.
1 Homework Q & A Junior Navigation Chapter 8 Plotting Celestial LOPs.
The Celestial Sphere Lab 2. Celestial sphere Geocentric model zenith - the point on the celestial sphere that is directly over our heads always 90˚ from.
Latitude and longitude
1 Homework Q & A Junior Navigation Chapter 7 The Celestial LOP.
Where is it? On the Celestial Sphere. Longitude and Latitude On Earth: Longitude is how far you are, in degrees, East or West of the “Prime Meridian”
Celestial Sphere. Earthly Sphere Latitude measures the number of degrees north or south of the equator. –DeKalb at 41° 55’ N Longitude measures degrees.
Celestial Navigation Getting Started Amy Hopkins.
LESSON 16: The Navigation Triangle Learning ObjectivesLearning Objectives –Comprehend the interrelationships of the terrestrial, celestial, and horizon.
Celestial Navigation I Calculating Latitude By Observing Heavenly Bodies.
1 Homework Q & A Junior Navigation Chapter 1 Lighthouses in the Sky.
LESSON 20: Sight Reduction Using the Nautical Almanac and Pub 229 Learning ObjectiveLearning Objective –Apply proper procedures to determine Hc and Zn.
1 Homework Q & A Junior Navigation Chapter 6 Light List for the Sky.
Navigation Unit 1-Planet Earth. What is Navigation?  The science of locating a position on earth.
Celestial Navigation Celestial Motion 1. General Organization Original “celestial sphere” model devised by the Greeks is still used –Greeks saw the Earth.
CELESTIAL NAVIGATION . Z Q PN HW HE PS Q’ Z’.
Sky Motions  Diurnal Motion Annual Motion. DIURNAL MOTION o Daily East / West motion of the sky Due to the Earth’s rotation (15°/hour) [360°/24 hours.
LESSON 15: Celestial Coordinate Systems Learning ObjectivesLearning Objectives –Know the ultimate goal of celestial navigation. –Know the definitions of.
1 Quiz Q & A Junior Navigation Chapter 5 Celestial Coordinates.
1 The Celestial LOP Junior Navigation Chapter 7. 2 Learning Objectives Understand the altitude-intercept method, and relationship between Ho, Hc and intercept.
1 Quiz Q & A Junior Navigation Chapter 6 Light List for the Sky.
Local and Sky Coordinates
MOTIONS OF SKY. Goals To identify the different parts of the celestial sphere model To understand how to express the location of objects in the sky To.
Chapter 4: Rising & Setting Stars © BRIEF
Observational Astronomy Mapping the Heavens Coordinate Systems We have two different ways to locate objects in the sky: Celestial equatorial system -Right.
CELESTIAL NAVIGATION: HOW MUCH DO YOU ALREADY KNOW? PRESENTER: JEFF GOLDSTEIN, BBAA SECRETARY
Nautical Almanac Sight Reduction (NASR) Method
The Celestial Sphere Model describing the sky. (Glass bowl over the Earth) Pretend that the stars are attached to it Celestial Meridian: Line North to.
1 Homework Q & A Junior Navigation Chapter 5 Celestial Coordinates.
Sight Planning Homework Solutions Global Navigation Chapter 6 1.
1 NavigationNavigation. 2 Chapter 3 Taking Sights and Finding LHA, Dec, and Ho NavigationNavigation.
A View of our Solar System
Taking Sights and Finding Ho, LHA and Dec
Positional Astronomy Chapter 3 Fundamentals of Radio Interferometry
you thought of going into teaching?”
Taking Sights and Finding Ho, LHA and Dec Quiz
Global Navigation Chapter 6
Reducing and Plotting Celestial Sights Homework Solutions
Sight Reductions & Plotting by the NASR Method Homework Solutions
The Celestial LOP Quiz Q & A Junior Navigation Chapter 7.
Lesson 17a: The Navigation Triangle
Plotting Celestial LOPs
Sight Reduction and Plotting by the NASR Method Quiz
On the Celestial Sphere
Finding celestial objects in our night sky … … requires knowing celestial coordinates, based on the time of night, and our location Every star, cluster,
Every star, cluster, nebula, galaxy,
Lighthouses in the Sky Homework Q & A Junior Navigation Chapter 1.
Topic 1 Space Exploration
On the Celestial Sphere
ASTRON VERSION 2.0 HOME PAGE
Reducing and Plotting Celestial Sights Quiz
Astronomy 100/101 Lab #1 Tom Burbine
Presentation transcript:

Navigation Astronomy – the science that deals with observation and understanding of relative and apparent motion of stars, planets, moon and sun. Navigational astronomy - the part of that science of practical use to navigator.

Navigation Chapter 4 Reducing & Plotting Celestial Sights by Law of Cosines

Learning Objectives Calculate altitude (Hc), intercept (a) & azimuth (Zn) using LOC Plot a single celestial LOP Plot a fix using two celestial sights

Navigation What bodies require a ‘v’ correction when calculating GHA?

Navigational Triangle Formed by the GP, DR, & Elevated Pole The sides Co-latitude (Co-L) Co-declination (Co-Dec) Co-Altitude (Co-H) Internal angles LHA Azimuth angle (Z) Parallactic angle Pn Co-L LHA Co-Dec Z p DR Co-H GP dec Lat Hour Circle of Body Observer’s Meridian 5 5

Law of Cosines Formula #1 Solve for Calculated Altitude (Hc) (cos LHA times cos Lat times cos Dec) (sin Lat times sin Dec) sin Hc plus = #2 Solve for Azimuth Angle (z) sin Dec (sin Lat times sin Hc) (cos Lat times cos Hc) cos z minus divide by = 6 6

Labels for z (azimuth angle) If LHA <180° If LHA >180° DR Lat: N N ddd.d° W N ddd.d° E DR Lat: S S ddd.d° W S ddd.d° E M West East m M West East m Elevated pole + shortage direction from you to body

Azimuth TRUE direction from DR to GP z to Zn Conversion If LHA <180° If LHA >180° DR Lat: N Zn = 360° - Z Zn = Z DR Lat: S Zn = 180° + Z Zn = 180° - Z Azimuth TRUE direction from DR to GP Pn LHA DR z GP N W Ps LHA DR z GP S W Pn Ps LHA DR z GP S E Pn Zn Pn LHA DR z GP N E Zn Zn Zn

Sight Reduction Exercise

LOC Sight Reduction Sight 2 – All: reduce only Sight 6 – Karen: reduce & plot Sight 7 – Jeff: reduce & plot Sight 11 – John: reduce & plot Sight 13 – Al: reduce & plot Sight 17 – Ben: reduce & plot Sight 21 – Terry: reduce & plot

Sun LOP Sight Reduction Sun LL 20 Mar 2013 14 – 15 – 10 00 – 00 5 19 – 15 – 10 2 44 57 6 92 46 4 23 5 43 16 4 4 7 2 0 6 7 - + 43 09 7 103 10 2 19 15 10 3 47 5 106 57 7 92 46 4 14 11 3 15 2 15 2 43 24 9 0 0 00 07 9 1 0 0 3 00 08 2 G g ʘ Navigation Class St Paul All 14 11 3 43 24 9 00 08 2 44 57 6 14 18833 00 13667 44 96000 + 43 44821 160 3 43 26 9 2 0 200

Moon LOP Sight Reduction Moon LL 20 Mar 2013 16 – 05 – 20 00 – 00 5 21 – 05 – 20 6 44 57 5 92 47 1 7 0 32 07 9 4 4 2 0 6 4 - + 32 01 5 29 56 1 21 05 20 1 16 4 31 13 6 92 47 1 298 26 5 58 0 59 4 59 4 33 00 9 0 0 19 18 36 5 0 4 18 36 1 G g ʘ Navigation Class St Paul 12 2 1 1 54 5 1 4 Karen 298 26 5 33 00 9 18 36 1 44 57 5 298 44167 18 60167 44 95833 + 33 01113 096 4 33 00 7 0 2 096

Moon LOP Sight Reduction Moon UL 20 Mar 2013 16 – 30 – 04 00 – 00 5 21 – 30 – 04 7 44 57 5 92 47 1 7 0 36 51 8 4 4 2 0 6 4 - + 36 45 4 29 56 1 21 30 04 7 10 5 37 12 8 92 47 1 304 25 7 55 6 57 5 27 5 37 12 9 0 0 30 0 18 36 5 2 2 18 34 3 G g ʘ 54 5 1 9 12 2 6 2 Navigation Class St Paul Jeff 304 25 7 37 12 9 18 34 3 44 57 5 304 42833 18 57167 44 95333 + 37 17711 101 1 37 10 6 2 3 101

Sun LOP Sight Reduction Sun LL 20 Mar 2013 16 – 45 – 02 00 – 00 5 21 – 45 – 02 11 44 57 6 92 46 4 23 5 26 11 8 13 7 2 0 15 7 - + 25 56 1 133 10 6 21 45 02 11 15 5 144 26 1 92 46 4 51 39 7 14 3 14 3 26 10 4 0 0 00 09 8 1 0 0 8 00 10 6 G g ʘ Navigation Class St Paul John 51 39 7 26 10 4 00 10 6 44 57 6 51 66167 00 17667 44 96000 + 26 17434 119 1 26 10 5 0 1 241

Star Sight Reducation Al 13 21 5 13 35833 44 57 6 44 96000 8 11 5 Rigel 20 Mar 2013 19 – 25 – 00 00 – 00 5 00 – 25 – 00 13 44 57 6 92 46 4 21 Mar 2013 23 5 35 38 4 4 7 2 0 6 7 - + 35 31 7 178 40 6 00 25 00 6 15 0 106 07 9 92 46 4 13 21 5 1 4 1 4 35 30 3 0 0 8 11 5 G g ʘ Navigation Class St Paul 281 12 3 ɤ Al 13 21 5 35 30 3 8 11 5 44 57 6 13 35833 8 19167 44 96000 - 35 50327 163 7 35 30 2 0 1 196

Planet Sight Reducation Navigation Class Ben St Paul 20 Mar 2013 17 23 5 19 – 33 – 32 Jupiter 58 42 4 00 – 00 44 57 6 2 0 19 – 33 – 32 92 46 4 13 7 5 + 25 43 2 58 26 1 21 33 1 44 57 6 25 72000 21 55167 44 96000 + 0 0 15 7 00 – 33 – 32 - 15 7 21 Mar 2013 58 26 7 g G ʘ 58 48378 00 110 05 4 0 6 129 5 33 32 8 23 0 58 29 0 + 2 1 + 1 2 00 21 33 0 118 29 6 + 0 1 231 0 0 0 6 2 9 92 46 4 - - + 0 1 0 6 25 43 2 21 33 1 58 26 1

Meridian Transit Terry 21 Mar 2013 13 – 18 – 07 00 – 00 5 18 – 18 – 07 + Terry 44 57 6 92 46 4 92 46 4 88 14 5 18 4 31 9 18 – 18 – 07 5 13 – 18 – 07 + 18 07

Meridian Transit Terry ʘ 21 Mar 2013 13 – 18 – 07 00 – 00 5 18 – 18 – 07 + 21 Terry 23 5 2.0 4.7 6.7 0.0 45 25 5 45 18 8 15 3 45 34 1 + 44 57 6 92 46 4 18 07 ʘ DR LOP 0 30 6 18 1 0 + 0 3 0 30 9 92 46 4 88 14 5 18 4 31 9 18 – 18 – 07 5 13 – 18 – 07 + 45 34 1 44 25 9 0 30 9 44 56 8 44 57 6 1 2

Plotting LOPs Must plot sight to determine its LOP. Before GPS, plotted Estimated Position (EP) EPs – now associated only with DR positions Sight accuracy (SErr)– associated with GPS or KP positions. 19

Sight plotted from DR position Navigation Class Plotting 2 St Paul 20’ Sight plotted from DR position 10’ 1415 Sun 45°N ʘ 1415 50’ 40’ 30’ EP L 45° 59.5’ N Lo 92° 45.4’ W 20 20’ 10’ 93°W 50’ 40’ 30’ 20’

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class St Paul Plotting 2 Sight plotted from GPS position 1415 Sun 1415 GPS a 2.0nm A 200° SErr 2.0 21

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class St Paul Plotting 6 Sight plotted from GPS position 1605 Moon a 0.2nm T 096° 1605 GPS SErr 0.2 22

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class St Paul 7 Sight plotted from GPS position 1630 GPS a 2.3nm T 101° 1630 Moon SErr 2.3 23

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class St Paul 11 Sight plotted from GPS position 1645 Sun 1645 GPS a 0.1nm A 241° SErr 0.1 24

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class St Paul 1925 GPS 1925 Rigel SErr 1.1 13 Plotting Sight plotted from GPS position a 0.1nm T 196° 25

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class Plotting 17 St Paul Sight plotted from GPS position 1934 Jupiter 1934 GPS a 2.9nm A 231° SErr 2.9 26

Sight plotted from GPS position 10’ 20’ 50’ 40’ 30’ 93°W ʘ Navigation Class Plotting 21 St Paul Sight plotted from GPS position a 1.2nm South 1318 GPS 1318 Sun SErr 1.2 27

Celestial Fixes Sights on two or more different bodies if time between sights < 20 min – Fix if time interval longer – RFix Reliability of a fix affected by: Number of observations Azimuths of observations Optimum cuts: 2-body fix = 90° 3-body fix = 60° Minimum cuts for fix: 2-body fix > 45° 3-body fix > 30°

Kr@p, outside the 3.0 limit & LOP separation only 40° Navigation Class Plotting 7 & 11 St Paul DOUBLE SCALE #7 – 1630 Moon 2.3nm T; Zn 101° #11 – 1645 Sun 0.1nm A; Zn 241° 10’ 5’ 1630-1645 Moon 1645 Sun 45°N 55’ 50’ 45’ Plot 1645 Position Plot 1645 LOP Re-plot 1630 LOP from 1645 Position Intersection of two LOPs is RFix 1645 position to 1645 RFix = SErr ʘ 1645 GPS ʘ 1630 GPS ʘ 1645 RFix 1630 Moon SErr 3.5 Kr@p, outside the 3.0 limit & LOP separation only 40° 29 5’ 93°W 55’ 50’ 45’ 40’ 35’

Next week bring your plotting tools & handout Navigation Next week bring your plotting tools & handout CHAPTER 5 NASR Reduction

Reducing and Plotting Celestial Sights The End