Status of AMoRE AMoRE (Advanced Mo-based Rare process Experiment)

Slides:



Advertisements
Similar presentations
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Advertisements

Double Beta Decay review
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
The AMoRE Project to search for 0  of 100 Mo using low temperature detectors Yong-Hamb Kim ( 김용함 ) - Center for Underground Physics, IBS - KRISS Joint.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Sun Kee Kim Seoul National University
Double Beta Decay Present and Future
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Stefano Pirro, IDEA Meeting -Zaragoza November 7, Nd Project High Temperature Thermistors News about NdGaO 3 Scintillating Bolometers Conclusions.
Dark Matter Search with CsI(Tl) crystal scintillators : KIMS
Prospect of  experiment in Korea Presented by H.J.Kim Yonsei Univ., 10/25/2003 KPS 2003 fall meeting Contents 1) Introduction of 2) Theory and Experiments.
A study on CaMoO4 crystal coupled with LAAPD for neutrinoless double beta decay Sejong University Jung il LEE LEE J.I., BHANG H.C.1, CHOI J.H.1, KIM S.C.1,
Internal background of CsI(Tl) crystal detectors for dark matter search Tae Yeon Kim Seoul National University For the KIMS Collaboration Seoul National.
M. Wójcik for the GERDA Collaboration Institute of Physics, Jagellonian University Epiphany 2006, Kraków, Poland, 6-7 January 2006.
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Min Kyu Lee ( 이민규 ) Kyoung Beom Lee ( 이경범 ) Yong-Hamb Kim ( 김용함 ) Low Temperature Detectors 2006 Workshop on the Underground Experiment at Yangyang TEXONO-KIMS.
VIeme rencontres du Vietnam
M. Wójcik Instytut Fizyki, Uniwersytet Jagielloński Instytut Fizyki Doświadczalnej, Uniwersytet Warszawski Warszawa, 10 Marca 2006.
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
Compared sensitivities of next generation DBD experiments IDEA - Zaragoza meeting – 7-8 November 2005 C. Augier presented by X. Sarazin LAL – Orsay – CNRS/IN2P3.
Stefano Pirro – NuMass 2010 Stefano Pirro Double beta decay searches with enriched and scintillating bolometers - Milano - Bicocca The Future of Neutrino.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
DOUBLE BETA DECAY EXPERIMENTS Yeongduk Kim Sejong University 2 nd Amore Meeting
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
Scintillating Bolometers – Rejection of background due to standard two-neutrino double beta decay D.M. Chernyak 1,2, F.A. Danevich 2, A. Giuliani 1, M.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
Yong-Hamb Kim Development of cryogenic CaMoO 4 detector 2nd International Workshop on double beta decay search Oct. 7~ Oct. 8, 2010.
Status overview of AMORE (or Amore) Sun Kee Kim Seoul National University 2 nd International Workshop on Double Beta Decay Search, Seoul, Oct. 7, 2010.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Current status of R&D on MMC and TES and a full size crystal test setup Sang-jun Lee Seoul National University.
ArchPbMoO4 scintillating bolometers as detectors to search for neutrinoless double beta decay of 100Mo Serge Nagorny INFN – Gran Sasso Science Institute,
Cryogenic Particle Detectors in Rare event Searches
SuperNEMO collaboration
Underground Experimental Program
Dark Matter Search With an Ultra-low Threshold Germanium Detector proposed by Tsinghua University Seoul National University Academia Sinica Qian Yue.
Activities on double beta decay search at KIMS
Sun Kee Kim Seoul National University
Double Beta Decay Experiment with CaMoO4 crystal
Double Beta Decay - status and future
Scintillating Bolometers for Double Beta Decay
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
Serge Nagorny – GSSI-INFN
Status of 100Mo based DBD experiment
Status and perspectives for Double Beta Decay measurements
R&D status & possible configuration of the 1st round experiment
XAX Can DM and DBD detectors combined?
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Double beta decay and Majorana neutrinos
Triangle Universities Nuclear Laboratory
of double beta decay experiments (outside of Japan)
Development of metal-loaded liquid scintillators
Status of Neutron flux Analysis in KIMS experiment
Fedor Danevich Institute for Nuclear Research Kyiv, Ukraine
Characterization of Large CaMoO4 crystals for 0n bb search
Triangle Universities Nuclear Laboratory
The 0-neutrino double beta decay search
Institut de Physique Nucléaire Orsay, France
Presentation transcript:

Status of AMoRE AMoRE (Advanced Mo-based Rare process Experiment) Presented by HongJoo Kim (KyungPook National Univ.) Seminar on Dark Matter and Double Beta Decay Search Sept. 22, 2011, YangYang , Korea

Neutrino No charge 3 flavor Mass /Mixing neutrino oscillation absolute mass? Type Dirac or Majorana? CP violation? Magnetic moment?

Double Beta Decay (2) n p e- e n p e- e (A,Z)  (A,Z+2) + 2 e- + 2e Here is beta decay, and here is double beta decay – both in the same nucleus. It only happens for certain nuclei that can’t undergo single beta decay. In these figures the energy released with a change in atomic number of 1 unit is shown on the left for nuclei with odd atomic mass number A, and for those with even atomic mass number. If the mass number is odd its always favourable to decay via a single beta decay – the isotopes tend towards the bottom of this energy parabola into a stable state. But for even A nuclei, there are two parabolas and sometimes the decay by a single beta requires energy input – so this step doesn’t happen, unless another energetically favourable beta decay happens simultaneously in the same nucleus. Thats simplified here – the intermediate step – a unitary chage in Z is energetically forbidden, but the combined process of two steps – a change in Z of 2 can occur. It turns out that there are only 35 isotopes known to undergo this process. This 2 neutrino double beta decay is a second order process in the standard model, but it does occur and has been observed. 0+ 1+ (A,Z) (A,Z+1) (A,Z+2) Only 35 isotopes known in nature

Double beta decay process 2n bb decay 2nd order beta decay Rare nuclear decay (>1018 years) 0n bb decay n mass>0 & Majorana particle 2) New Physics e ν N N’ 2νββ e ν N N’ 0νββ A B Transition bb allowed Forbidden  transition Z Energy Z+1 Z+2 Qbb 100Mo 100Ru 100Tc

History 1934: E. Fermi theory of weak interaction 1935: M. Goeppert Meyer discussed 2 1938: E. Majorana two component neutrino 1939: H. Furry discussed 0 1949: First half-life limits (Fireman, Fremlin,...) I thought it would be nice to take a look at the history of double beta decay. It was first proposed by Maria Goeppet-Mayer in 1935, and the zero mode was first discussed in 1939. It took a while for the first limits on the 2 neutrino mode half life. The first indirect evidence came from geochemistry and the first direct observation was reported in 1987 in an experiment situated under the Hoover dam. And in 2001 the first evidence for the neutrinoless mode was published but this has been widely disputed in the community. 1967: First geochemical evidence for 2 1987: First laboratory evidence for 2 2001: First laboratory evidence for 0???

First experimental results PHYSICAL REVIEW 146 (1966) 810 48CaF2(Eu), 19 g  T1/20 >21020 yr

Heidelberg -Moscow Many critism around!! T1/2 = 0.6 - 8.4 x 1025 yr Subgroup of collaboration T1/2 = 0.6 - 8.4 x 1025 yr m = 0.17 - 0.63 eV H.V. Klapdor-Kleingrothaus et al, Phys. Lett. B 586, 198 (2004)

Theory issues 1/T0n 1/2 = G0n(E0,Z) |M0n|2 <mbb>2, The decay rate is related to <mbb> by 1/T0n 1/2 = G0n(E0,Z) |M0n|2 <mbb>2, Where G0n(E0,Z) is calculable phase space factor (~ Qbb5), M0n-Nuclear Matrix Element, hard to calculate Uncertain to factor 2-10, isotope dependent Motivation to measure several isotopes The two basic and complementary methods of evaluating M are the nuclear shell model (SM) and the Quasiparticle Random Phase Approximation (QRPA) and its various modifications.

Nuclear Matrix Elements Prediction M. Lindner QRPA, RQRPA: V.Rodin, A. Faessler, F. Simkovic, P. Vogel, Nucl. Phys. A 793, 213 (2007) Shell model: E. Caurieratal. Rev. Mod. Phys. 77, 427 (2005).

Experimental sensitivity T0n1/2 ~ e . a e – efficiency, a – enrichment, M – mass, t - time of measurement (limited), FWHM – energy resolution, B - background

Experimental Technique Two classes of approach to the experiment: Active detector Ionization detectors : HPGe, CZT, LXe IGEX, H-M,Gerda, Majorana, COBRA, EXO, XMASS * Klapdor published positve evidence. Phys. Lett. B 586, 198 (2004) Scintillation detectors : CdWo4, CaF2, CaMoO4 KieV-Florence-CdWO4, CANDLES, SNO++ (LSC) Bolometer detectors : TeO2 CUORICINO, CUORE Bolometer + Scintillator: CaMoO4, CdWO4, ZnSe.. Passive detector Tracking detectors : foil +tracking+scin NEMO, MOON, SuperNEMO

Status of neutrino-less double beta decay searches

AMoRe Some Proposals Gerda COBRA EXO Enriched Xe 76Ge CUORE LNGS Majorana 76Ge USA EXO Enriched Xe Gerda 76Ge LNGS CUORE TeO2 bolometers LNGS COBRA And lots of people are thinking about this. This is by no means a complete list, just some proposals that illustrate the range of technologies and isotopes under study. Of course I’m going to focus on the COBRA experiment today since that is what I work on. Super NEMO Range of isotopes AMoRe

Scintillation Crystals for bb (Calorimeter technique) 300g 116CdWO4 bb search by Kiev group; >0.7x1023 years Enrichment, PSD, active shielding -> successful CaMoO4 ; Mo, Ca bb search * First recognized by this group (H.J.Kim et al, New view in particle physics,Vietnam Aug 2004.) * Scintillation bolometer CaMoO4 DBD for 100Mo (3034 keV), 48Ca (4272 keV) Light output; 10-20% of CsI(Tl) at 20o, increase at lower temp. Decay time ; 16 μ sec Wavelength; 450-650ns-> RbCs PMT or APD Pulse shape discrimination First developed 2003 (5x5x5mm3)

History for CaMoO4 1) 2002 : Idea and try to grow CMO in Korea 2) 2003 : Discussion with V.Kornokov => Send test CMO (better quality) 3) 2004 : CMO test and Conference presentation, Extended idea of XMoO4, low temp. CaMoO4 4) 2005-2007 : Large CMO with 1st ISTC project 5) 2006 : Discussion with F. Danevich => CMO by Lviv and collaborative effort 6) 2007 : CMO R&D in low temp. started. 7) 2008 : 2nd ISTC approved in Russis (3kg 100Mo and 48Ca depleted CaMoO4 crystal growing project) 8) 2009 : AMORE collaboration formed Proc. New View in Particle Physics (VIETNAM ’2004) Aug. 2004, p.449 IEEE Nucl. Sci. 52, 1131 (2005) NIMA 584, 334 (2008) IEEE Nucl. Sci. (2010)

AMoRE Collaboration 4 countries 9 institutions 69 collaborators Korea (35) Seoul National University : H.Bhang, S.Choi, M.J.Kim, S.K.Kim, M.J.Lee, S.S.Myung, S.Olsen, Y. Sato, K.Tanida, S.C.Kim, J.Choi, H.S.Lee, S.J.Lee, J.H.Lee, J.K.Lee, X.Li, J.Li, H.Kang, H.K.Kang, Y.Oh, S.J.Kim, E.H.Kim, K.Tshoo, D.K.Kim(24) Sejong University : Y.D.Kim, E.-J.Jeon, K. Ma, J.I.Lee, W.Kang, J.Hwa (5) Kyungpook national University : H.J.Kim, J.So, Hua Jiang, Y.S.Hwang(4) KRISS : Y.H.Kim, M.K.Lee, H.S.Park, J.H.Kim, J.M.Lee , K.B.Lee(6) Russia (16) ITEP(Institute for Theoretical and Experimental Physics) : V.Kornoukhov, P. Ploz, N.Khanbekov (3) Baksan National Observatory : A.Ganggapshev, A.Gezhaev, V.Gurentsov, V.Kuzminov, V.Kazalov, O.Mineev, S.Panasenko, S.Ratkevich, A.Verensnikova, S.Yakimenko, N.Yershov, K.Efendiev, Y.Gabriljuk (13) Ukraine(11) INR(Institute for Nuclear Research) : F.Danevich, V.Tretyak, V.Kobychev, A.Nikolaiko, D.Poda, R.Boiko, R.Podviianiuk, S.Nagorny, O.Polischuk, V.Kudovbenko, D.Chernyak(11) China(3) Tsinghua University : Y.Li, Q.Yue(2) Sichuan University : J. Zhu(1) 4 countries 9 institutions 69 collaborators

100Mo, 40Ca enriched materials (Prepared by V.N.Kornoukhov) Mo-100 isotope production: The ECP (Electrochemical plant) Zelenogorsk, Krasnoyarsky kray, Siberia 100MoO3 oxide with mass of Mo-100 : 2,5 kg Enrichment: Mo-100 = 96,1% Impurities (the results from ICP MS measurements): U <= 0.00007 ppm (< 0,07 ppb) and <= 0.0002 ppm (< 0,2 ppb) Th <= 0.0001 ppm (< 0,1 ppb) and <= 0.0007 ppm (< 0,7 ppb) 226Ra < 2,3 mBq/kg, 228Ac < 3,8 mBq/kg Current capacity is 0,6 kg of Mo-100 per month (7-8 kg per year). The industrial separator SU20 Lesnoy, Sverdlovky region 27 kg of Ca-40 (40CaCO3) is available now at EKP, Lesnoy Ca-48 < 0,001%

48Ca Enrichment/Depletion at KAERI(Korea Atomic Energy Research Institute) ALSIS (Advanced Laser Stable Isotope Separation) - Features : Isotope-Selective Optical Pumping (ISOP) followed by Non-selective Resonant Photoionization (RPI) - ISOP gives good isotope-selectivity and non-selective RPI high yield. + RPI (-) Charge collector target isotope other isotope target isotope ion Atomic vapor ISOP

48Ca Enrichment/Depletion at KAERI Special features of ALSIS - Isotope-selective optical pumping followed by resonant photo-ionization - Ideal for 48Ca Production - Fiber-based lasers : most advanced, maintenance-free Engineering Demonstration (2010~2012) - Production capability : 1kg/yr Production Demonstration for (2013 – 2014) - Production capability : 5 kg/yr

CaMoO4 crystal development 12.5 cm 2.2 cm Russia(2006) Korea(2003) Ukraine-CARAT(2006) IEEE/TNS 2008 30x30x200mm Russia (2007), 1st ISTC project 2nd ISTC project (2009~) for 48deplCa100MoO4

CaMoO4 crystal Photo-electron yield 4% FWHM at 3 MeV Only with photoelectron statistics

CaMoO4 crystal energy resolution optimization 137Cs 6 oC NIMA 584, 334 (2008) 27 oC 5% FWHM at 3 MeV

CaMoO4 study Ea/b = 0.20 with 5.5MeV a Pulse shape discrimination

BG spectra of SB28 ( by Jungho’s talk) b-a decay in 238U 214Bi (Q-value : 3.27-MeV) → 214Po (Q-value : 7.83-MeV)→ 210Pb a-a decay in 232Th 220Rn (Q-value : 6.41-MeV) → 216Po (Q-value : 6.91-MeV)→ 212Pb Th-232 chain 216Po : 1.61-MeV, 57 events ≈ 0.07mBq/kg U-238 chain 214Po : 1.93-MeV, 63 events ≈ 0.08mBq/kg 220Rn : 1.45-MeV 214Bi (Q-value : 3.27-MeV)

Upgrade plan of 4p CsI detector and shielding cutrrent setup Future setup CsI(Tl) CsI(Tl) CsI(Tl) CsI(Tl) CsI(Tl) CsI(Tl) CsI(Tl) CsI(Tl) 14 CsI channel + 14 PMT 12 CsI channels (side) were shared a PMT with neighbor channel. 14 CsI channel + 26 PMT 12 CsI channels (side) will be attached with 2 PMTs. New Shielding : 10 cm Pb, Polyethylene shielding will be build

Sensitivity of 40Ca100MoO4 Mo-100 2n Signal (mn=0.4eV) Bi-214 Tl-208 3kg (100Mo) : 48Ca depletion 3 years  6.0x1024 y (mn= 0.2~0.7 eV) Mo-100 2n Signal (mn=0.4eV) Bi-214 Tl-208 10s significance Claim by Klapdor-Kleingrothaus et al.  mn = 0.4 eV GEANT4 study (by Dr J.I.Lee)

Low temperature phonon detection technique x-ray, γ-ray, e-, WIMP, etc. Choice of thermometers Thermistors (doped Ge, Si) TES (Transition Edge Sensor) MMC (Metallic Magnetic Calorimeter ) STJ, KID etc.

Scintillating bolometers detection technique Reflecting internal cavity (Ag-coated Cu) Scintillating crystal Ge-NTD Optical detector (Ge disk) 20 mK

Temperature dependence of CaMoO4 SrMoO4 (by Hua Jiang’s talk)

CaMoO4+MMC (By Sangjun’s talk) ~ 500m thick brass base temperature : 13 ~ 100 mK crystal size ~ 1 cm  1 cm  0.7 cm Metallic Magnetic Calorimeter (MMC) Method FWHM = 11.2 keV 241Am a FWHM = 1.7 keV 60keV Astropart. Physi.34, 732, 2011

CaMoO4 DBD Sensitivity 0.5% FWHM 15 keV FWHM Efficiency ~ 0.8 100 kg CaMoO4 Cryogenic detector Mo-100~ 50 kg 0.5% FWHM 15 keV FWHM Efficiency ~ 0.8 5 years, 100 kg 40Ca100MoO4 3 x1026 years ~ 50 meV

Dark matter sensitivity of CaMoO4 cryogenic experiment Bottino et al Trotta et al Ellis et al CaMoO4 CDMS 2008 SuperCDMS 25kg XENON10 2007 XENON100 6000 kgd CMSSM, Ellis et al CMSSM, Markov chain Trotta et al Effective MSSM, Bottino et al Eth=10 keV (5 and 100 kg year) Eth=1 keV by S. Scopel

Thank you