Evidence for Dayside Interhemispheric Field-Aligned Currents During Strong IMF By Conditions Seen by SuperDARN Radars Joseph B.H. Baker, Bharat Kunduri.

Slides:



Advertisements
Similar presentations
SuperDARN is a network of HF radars (8-20 MHz) used to study the convection in the Earth's ionosphere at altitudes between 90 and 400 km and at magnetic.
Advertisements

Generation of the transpolar potential Ramon E. Lopez Dept. of Physics UT Arlington.
The role of solar wind energy flux for transpolar arc luminosity A.Kullen 1, J. A. Cumnock 2,3, and T. Karlsson 2 1 Swedish Institute of Space Physics,
VT SuperDARN Group2011 SuperDARN WorkshopJoseph Baker Testing the Equipotential Magnetic Field Line Assumption Using Interhemispheric.
Spatial distribution of the auroral precipitation zones during storms connected with magnetic clouds O.I. Yagodkina 1, I.V. Despirak 1, V. Guineva 2 1.
SuperDARN interhemispheric observations of reconnection signatures: a case study. Coco, I. (1), S. Massetti (1), E. Amata (1), M. F. Marcucci (1), and.
Anti-parallel versus Component Reconnection at the Magnetopause K.J. Trattner Lockheed Martin Advanced Technology Center Palo Alto, CA, USA and the Polar/TIMAS,
Occurrence and properties of substorms associated with pseudobreakups Anita Kullen Space & Plasma Physics, EES.
Normal text - click to edit 1 August 2011 Auroral asymmetries in the conjugate hemispheres (and where KuaFu B can do better……) Nikolai Østgaard University.
Peter Boakes 1, Steve Milan 2, Adrian Grocott 2, Mervyn Freeman 3, Gareth Chisham 3, Gary Abel 3, Benoit Hubert 4, Victor Sergeev 5 Rumi Nakamura 1, Wolfgang.
SuperDARN Workshop May 30 – June Magnetopause reconnection rate and cold plasma density: a study using SuperDARN Mark Lester 1, Adrian Grocott 1,2,
Monitoring of auroral oval location and geomagnetic activity based on magnetic measurements from satellites in low Earth orbit. S. Vennerstrom Technical.
Figure 4: Overview of the geometry of the Rankin Inlet and Inuvik radar in MLT coordinates on Aug 08 th Merged vectors are shown in black. AMPERE.
Space Weather Workshop, Boulder, CO, April 2013 No. 1 Ionospheric plasma irregularities at high latitudes as observed by CHAMP Hermann Lühr and.
PLASMA TRANSPORT ALONG DISCRETE AURORAL ARCS A.Kullen 1, T. Johansson 2, S. Buchert 1, and S. Figueiredo 2 1 Swedish Institute of Space Physics, Uppsala.
AJ Ribeiro Irregs.Short Meeting Title, Date A survey of plasma irregularities seen by the mid-latitude Blackstone SuperDARN radar.
Ionospheric Convection and Field-Aligned Currents During Strong Magnetospheric Driving: A SuperDARN/AMPERE Case Study L. B. N. Clausen (1), J. B. H. Baker.
Origin of Ionospheric Hot Spots During Quiet Times J. Raeder, W. Li Space Science Center, UNH D. Knipp NCAR/HAO MURI/NADIR Workshop, Boulder, CO, October.
On the relationship between polar cap flows and the IMF W.A. Bristow, R.T. Parris, J. Spaleta, T. Theurer Geophysical Institute, University of Alaska.
State Key Laboratory of Space Weather An inter-hemisphere asymmetry of the cusp region against the geomagnetic dipole tilt Jiankui Shi Center for Space.
Ionospheric Electric Field Variations during Geomagnetic Storms Simulated using CMIT W. Wang 1, A. D. Richmond 1, J. Lei 1, A. G. Burns 1, M. Wiltberger.
& Atmospheric StudiesPhysics & Engineering Physics, University of Saskatchewan Hemispheric Comparison of Signatures of.
Magnetometer and radar study of the ionospheric convection response to sudden changes in the interplanetary magnetic field R. A. D. Fiori 1,2, D. Boteler.
What DMSP Data Tell us About the Thermosphere Response to Solar Wind Forcing Delores Knipp CU Aerospace Engineering Sciences and NCAR HAO With Assistance.
On the importance of IMF |B Y | on polar cap patch formation Qinghe Zhang 1, Beichen Zhang 1, Ruiyuan Liu 1, M. W. Dunlop 2, M. Lockwood 2, 3, J. Moen.
Radio and Space Plasma Physics Group The formation of transpolar arcs R. C. Fear and S. E. Milan University of Leicester.
Thursday, May 14, 2009Cluster Workshop – UppsalaR. J. Strangeway – 1 The Auroral Acceleration Region: Lessons from FAST, Questions for Cluster Robert J.
1 Cambridge 2004 Wolfgang Baumjohann IWF/ÖAW Graz, Austria With help from: R. Nakamura, A. Runov, Y. Asano & V.A. Sergeev Magnetotail Transport and Substorms.
EISCAT Svalbard Radar studies of meso-scale plasma flow channels in the polar cusp ionosphere Y. Dåbakk et al.
Response of the Magnetosphere and Ionosphere to Solar Wind Dynamic Pressure Pulse KYUNG SUN PARK 1, TATSUKI OGINO 2, and DAE-YOUNG LEE 3 1 School of Space.
Season-dependent magnetotail B y and associated field-aligned currents A.Petrukovich 1 and R. Lukianova 2,1 1 Space Research Institute, Moscow,
Mapping high-latitude TEC fluctuations using GNSS I.I. SHAGIMURATOV (1), A. KRANKOWSKI (2), R. SIERADZKI (2), I.E. ZAKHARENKOVA (1,2), Yu.V. CHERNIAK (1),
PHYSICS AND ENGINEERING PHYSICS The Disruption Zone Model of Magnetospheric Substorms George Sofko, Kathryn McWilliams, Chad Bryant I SuperDARN 2011 Workshop,
University of Saskatchewan PHYSICS AND ENGINEERING PHYSICS Spectral widths of F-region PolarDARN echoes, a statistical assessment A.V. Koustov, S. Toderian.
Testing the Equipotential Magnetic Field Line Assumption Using SuperDARN Measurements and the Cluster Electron Drift Instrument (EDI) Joseph B. H. Baker.
ESS 7 Lecture 13 October 29, 2008 Substorms. Time Series of Images of the Auroral Substorm This set of images in the ultra-violet from the Polar satellite.
CEDAR 2008 Workshop Observations at the Plasmaspheric Boundary Layer with the Mid-latitude SuperDARN radars Mike Ruohoniemi, Ray Greenwald, and Jo Baker.
Ionospheric Convection during an extended period of Northward IMF
Guan Le NASA Goddard Space Flight Center Challenges in Measuring External Current Systems Driven by Solar Wind-Magnetosphere Interaction.
Dawn-dusk asymmetry in the intensity of the polar cap flows as seen by the SuperDARN radars A.V. Koustov, R.A.D. Fiori, Z. Abooalizadeh PHYSICS AND ENGINEERING.
New Science Opportunities with a Mid-Latitude SuperDARN Radar Raymond A. Greenwald Johns Hopkins University Applied Physics Laboratory.
Study on the Impact of Combined Magnetic and Electric Field Analysis and of Ocean Circulation Effects on Swarm Mission Performance by S. Vennerstrom, E.
Polar/VIS Science Report Conjugate Auroral Observations and Implications for Magnetospheric Physics. John Sigwarth – NASA/GSFC Nicola Fox – JHU/APL Louis.
© Research Section for Plasma and Space Physics UNIVERSITY OF OSLO Daytime Aurora Jøran Moen.
1 CHARM: MAPS highlights CHARM: MAPS highlights 2010.
ASEN 5335 Aerospace Environments -- Magnetospheres 1 As the magnetized solar wind flows past the Earth, the plasma interacts with Earth’s magnetic field.
Mike Ruohoniemi 2012VT SuperDARN Remote Sensing of the Ionosphere and Earth’s Surface with HF Radar J. Michael Ruohoniemi and Joseph Baker.
SuperDARN Observations of ULF Pulsations During a Substorm Expansion Phase Onset N. A. Frissell, J. B. H. Baker, J. M. Ruohoniemi, L. B. N. Clausen, R.
1 NSSC National Space Science Center, Chinese academy of Sciences FACs connecting the Ionosphere and Magnetosphere: Cluster and Double Star Observations.
Statistical Characterization of sub-auroral polarization stream using using large scale observations by mid- latitude SuperDARN radars B. S. R. Kunduri.
TBD: Contributions of MIT Coupling to Important Features… Open-closed field line boundary Equatorward boundaries of particle precipitation Plasmapause.
Postmidnight ionospheric trough in summer and link to solar wind: how, when and why? Mirela Voiculescu (1), T. Nygrén (2), A. Aikio(2), H. Vanhamäki (2)
October 8, 2009 Virginia Tech SuperDARN HF radar group Relocated from JHU/APL to VT in 2008 Senior Staff: Mike Ruohoniemi Jo Baker Ray Greenwald.
Radiation Belt Storm Probes Mission and the Ionosphere-Thermosphere RPSP SWG Meeting June 2009.
VT SuperDARN Group Joseph Baker Ground-Based Observations of the Plasmapause Boundary Layer (PBL) Region with.
Baker Tech SuperDARN Large-Scale Observations of the Sub-Auroral Polarization Stream (SAPS) From.
Dynamics of the auroral bifurcations at Saturn and their role in magnetopause reconnection LPAP - Université de Liège A. Radioti, J.-C. Gérard, D. Grodent,
near-Space Environment
Challenges The topological status of the magnetosphere: open or closed? Driver(s) of ionospheric sunward flow Source(s) of NBZ currents Key problem: are.
Paul Song Center for Atmospheric Research
Dynamics of the AMPERE R1 Oval during substorms and SMCs
Department of Electrical and Computer Engineering, Virginia Tech
Global MHD Simulations of Dayside Magnetopause Dynamics.
The Source of Planetary Period Oscillations in Saturn’s magnetosphere
CEDAR 2013 Workshop International space weather and climate observations along the 120E/60W meridional circle and its surrounding areas Space weather observations.
The Physics of Space Plasmas
Jupiter’s Polar Auroral Emisssions
Subauroral heliosphere-geosphere coupling during November 2004 ionospheric storms: F2-region, North-East Asia Chelpanov M. A., Zolotukhina N.A. Institute.
Dynamic Coupling between the Magnetosphere and the Ionosphere
On Strong Coupling between the Harang Reversal Evolution and Substorm Dynamics: A Synthesis of SuperDARN, DMSP and IMAGE Observations Shasha Zou1, Larry.
Presentation transcript:

Evidence for Dayside Interhemispheric Field-Aligned Currents During Strong IMF By Conditions Seen by SuperDARN Radars Joseph B.H. Baker, Bharat Kunduri and J. Michael Ruohoniemi Center for Space Science and Engineering Research (Space@VT) Virginia Tech

The SuperDARN Radars The Super Dual Auroral Radar Network (SuperDARN) is an international network of high-frequency (HF) radars for researching the Earth’s upper atmosphere, ionosphere, and connection into geospace.

Interhemispheric FACs A strong IMF By component will penetrate the dayside magnetosphere and produce interhemispheric field-aligned currents (FACs) [Kozlovsky et al., 2003]. For a strong negative IMF By component: NORTHERN HEMISPHERE: Downward FAC in polar cap Outward FAC in closed field-line region Eastward auroral zone convection SOUTHERN HEMISPHERE: Upward FAC in polar cap Downward FAC in closed field line region Westward auroral zone convection From Kozlovsky et al. [2003]

20050529 0240 UT Southern Hemisphere (Winter) Northern Hemisphere (Summer) Afternoon convection is stronger in the southern (winter) hemisphere (left panel) Interplanetary Magnetic Field (IMF) is southward with negative By component

20050529 0240 UT Southern Hemisphere (Winter) Northern Hemisphere (Summer) Southern Hemisphere: Field-aligned currents reinforce afternoon convection Northern Hemisphere: Field-aligned currents counteract afternoon convection

20050216 1330 UT Southern Hemisphere (Summer) Northern Hemisphere (Winter) Afternoon convection is stronger in the southern (summer) hemisphere (left panel) Interplanetary Magnetic Field (IMF) is southward with negative By component

20050216 1330 UT Southern Hemisphere (Summer) Northern Hemisphere (Winter) Southern Hemisphere: Field-aligned currents reinforce afternoon convection Northern Hemisphere: Field-aligned currents counteract afternoon convection

Velocity Differences Southern hemisphere velocities (left) are mapped into the northern hemisphere (middle) and compared with northern hemisphere velocities (right). The velocities are clearly higher at the southern footpoints of the closed flux tubes.

Estimated FAC Magnitudes Current Density (nA/m2) The interhemispheric velocity differences are used to estimate the FAC magnitude.

Width of the FAC Channel Blue = southern velocities Black = northern velocities Feb 16th 2005 May 29th, 2005 The FAC channels are 3-6° wide and the velocity difference is strongest at high latitudes. The velocity difference also decreases moving from noon toward dusk.

Summary During two event periods with strong negative IMF By component, SuperDARN radars observed strong interhemispheric asymmetries in the afternoon sunward convection on closed magnetic field lines. The observations are consistent with interhemispheric field-aligned currents (FACs) flowing out of the northern hemisphere and into the southern hemisphere on closed magnetic field lines [Kozlovsky et al., 2003]. Estimates for the strength of the FACs have been calculated and the latitudinal width of the FAC channel was found to be 3-6 degrees wide. The intensity of the FACs decreased moving equatorward from the open-closed field line boundary and moving from noon toward later local times.