Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.

Slides:



Advertisements
Similar presentations
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Advertisements

Perlecan in late stages of osteoarthritis of the human knee joint
B. Bai, Y. Li  Osteoarthritis and Cartilage 
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage  P. Julkunen, T. Harjula, J. Iivarinen, J. Marjanen,
Perlecan in late stages of osteoarthritis of the human knee joint
Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus  M. Cucchiarini, A.L. McNulty,
C.P. Neu, T. Novak, K.F. Gilliland, P. Marshall, S. Calve 
An educational review of cartilage repair: precepts & practice – myths & misconceptions – progress & prospects  E.B. Hunziker, K. Lippuner, M.J.B. Keel,
Effect of interval-training exercise on subchondral bone in a chemically-induced osteoarthritis model  A. Boudenot, N. Presle, R. Uzbekov, H. Toumi, S.
J. K. Meckes, B. Caramés, M. Olmer, W. B. Kiosses, S. P. Grogan, M. K
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
D.A. Houston, A.K. Amin, T.O. White, I.D.M. Smith, A.C. Hall 
Micromechanical mapping of early osteoarthritic changes in the pericellular matrix of human articular cartilage  R.E. Wilusz, S. Zauscher, F. Guilak 
Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer  C.B. Raub, S.C. Hsu, E.F. Chan, R. Shirazi,
A. Williams, Y. Qian, D. Bear, C.R. Chu  Osteoarthritis and Cartilage 
Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes 
H. Moriyama, Ph. D. , O. Yoshimura, Ph. D. , S. Kawamata, Ph. D. , K
K. Murata, N. Kanemura, T. Kokubun, T. Fujino, Y. Morishita, K
Subchondral plate porosity colocalizes with the point of mechanical load during ambulation in a rat knee model of post-traumatic osteoarthritis  H. Iijima,
Acute joint pathology and synovial inflammation is associated with increased intra- articular fracture severity in the mouse knee  J.S. Lewis, W.C. Hembree,
Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect.
Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis 
The layered structure of the articular surface
The use of hyperosmotic saline for chondroprotection: implications for orthopaedic surgery and cartilage repair  N.M. Eltawil, S.E.M. Howie, A.H.R.W.
A.S. Aula, J. Töyräs, V. Tiitu, J.S. Jurvelin 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the guinea pig  V.B. Kraus, J.L. Huebner, J. DeGroot,
B. H. He, M. Christin, S. Mouchbahani-Constance, A. Davidova, R
Characterization of mature vs aged rabbit articular cartilage: analysis of cell density, apoptosis-related gene expression and mechanisms controlling.
Protective effects of a cathepsin K inhibitor, SB , in the canine partial medial meniscectomy model of osteoarthritis  J.R. Connor, C. LePage, B.A.
Articular cartilage degeneration following anterior cruciate ligament injury: a comparison of surgical transection and noninvasive rupture as preclinical.
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
Exercise intervention increases expression of bone morphogenetic proteins and prevents the progression of cartilage-subchondral bone lesions in a post-traumatic.
Site-dependent changes in structure and function of lapine articular cartilage 4 weeks after anterior cruciate ligament transection  J.T.A. Mäkelä, Z.S.
M. A. McNulty, R. F. Loeser, C. Davey, M. F. Callahan, C. M
Effects of long-term estrogen replacement therapy on articular cartilage IGFBP-2, IGFBP-3, collagen and proteoglycan levels in ovariectomized cynomolgus.
Changes in the metabolism of chondroitin sulfate glycosaminoglycans in articular cartilage from patients with Kashin–Beck disease  M. Luo, J. Chen, S.
T. Kurth, M. Sc. , E. Hedbom, Ph. D. , N. Shintani, Ph. D. , M
Nonlinear optical microscopy of articular cartilage
D.R. Rich, A.L. Clark  Osteoarthritis and Cartilage 
E.B. Hunziker, M.D., A. Stähli, D.M.D.  Osteoarthritis and Cartilage 
The OARSI histopathology initiative – recommendations for histological assessments of osteoarthritis in the dog  J.L. Cook, K. Kuroki, D. Visco, J.-P.
Pharmaceutical nanocarrier association with chondrocytes and cartilage explants: influence of surface modification and extracellular matrix depletion 
Do the matrix degrading enzymes cathepsins B and D increase following a high intensity exercise regime?  E.A. Bowe, Ph.D., R.C. Murray, Ph.D., L.B. Jeffcott,
Changes of human menisci in osteoarthritic knee joints
Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical.
J. Desrochers, M.W. Amrein, J.R. Matyas  Osteoarthritis and Cartilage 
V. Morel, Ph.D., A. Merçay, M.Sc., T.M. Quinn, Ph.D. 
Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression 
Significance of the serum CTX-II level in an osteoarthritis animal model: a 5-month longitudinal study  M.E. Duclos, O. Roualdes, R. Cararo, J.C. Rousseau,
Three-dimensional patterns of early acetabular cartilage damage in hip dysplasia; a high-resolutional CT arthrography study  S. Tamura, T. Nishii, T.
Characterizing osteochondrosis in the dog: potential roles for matrix metalloproteinases and mechanical load in pathogenesis and disease progression 
F.W. Roemer, M.D.  Osteoarthritis and Cartilage 
K. Kuroki, C.R. Cook, J.L. Cook  Osteoarthritis and Cartilage 
Intra-articular therapy with recombinant human GDF5 arrests disease progression and stimulates cartilage repair in the rat medial meniscus transection.
Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage  K.W. Ng, Ph.D., L.E. Kugler, B.S.,
K.P. Arkill, Ph.D., C.P. Winlove, D.Phil.  Osteoarthritis and Cartilage 
Ovariectomy alters the structural and biomechanical properties of ovine femoro-tibial articular cartilage and increases cartilage iNOS  M.A. Cake, Ph.D.,
Structure of pericellular matrix around agarose-embedded chondrocytes
P. Rahnamay Moshtagh, N. M. Korthagen, S. G. Plomp, B. Pouran, A
Estrogen reduces mechanical injury-related cell death and proteoglycan degradation in mature articular cartilage independent of the presence of the superficial.
Nanoparticle targeting to cartilage: effects of surface charge on nanoparticle interactions with joint tissues  S.B. Brown, B. Sharma  Osteoarthritis.
Knee cartilage defects in a sample of older adults: natural history, clinical significance and factors influencing change over 2.9 years  J. Carnes, O.
Preliminary study on diffraction enhanced radiographic imaging for a canine model of cartilage damage  C. Muehleman, Ph.D., J. Li, M.D., Z. Zhong, Ph.D. 
B.D. Bomsta, M.S., L.C. Bridgewater, Ph.D., R.E. Seegmiller, Ph.D. 
The effect of platelet rich plasma combined with microfractures on the treatment of chondral defects: an experimental study in a sheep model  G. Milano,
Osteoarthritis year in review 2016: mechanics
I. Gurkan, A. Ranganathan, X. Yang, W. E. Horton, M. Todman, J
Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression  S.L. Bevill, P.L. Briant, M.E. Levenston,
Tibial coverage, meniscus position, size and damage in knees discordant for joint space narrowing – data from the Osteoarthritis Initiative  K. Bloecker,
Enhanced cell-induced articular cartilage regeneration by chondrons; the influence of joint damage and harvest site  L.A. Vonk, T.S. de Windt, A.H.M.
Presentation transcript:

Cell and matrix morphology in articular cartilage from adult human knee and ankle joints suggests depth-associated adaptations to biomechanical and anatomical roles  T.M. Quinn, H.-J. Häuselmann, N. Shintani, E.B. Hunziker  Osteoarthritis and Cartilage  Volume 21, Issue 12, Pages 1904-1912 (December 2013) DOI: 10.1016/j.joca.2013.09.011 Copyright © 2013 Terms and Conditions

Fig. 1 Light micrographs of normal adult human articular cartilage originating from the superficial/transitional zones (A: talar dome, B: medial tibial plateau), the upper radial zone (C: talar dome, D: medial tibial plateau), and the lower radial zone (E: talar dome, F: medial tibial plateau). In the superficial zone, chondrocytes are relatively flattened with elliptical profiles. In the transitional zone, chondrocytes are more rounded, and in the radial zone they tend to be grouped in vertical stacks (chondrons). Semi-thin (1 μm thick) sections of Epon-embedded tissue stained with Toluidine Blue O. Bar = 100 μm. Osteoarthritis and Cartilage 2013 21, 1904-1912DOI: (10.1016/j.joca.2013.09.011) Copyright © 2013 Terms and Conditions

Fig. 2 Transmission electron micrographs of normal adult human articular cartilage originating from the superficial zone (A: talar dome, B: medial tibial plateau), the transitional zone (C: talar dome, D: medial tibial plateau), the upper radial zone (E: talar dome, F: medial tibial plateau) and the lower radial zone (G: talar dome, H: medial tibial plateau). Thin (60 nm thick) sections of Epon-embedded tissue stained with uranyl acetate and lead citrate. Bar = 10 μm. Osteoarthritis and Cartilage 2013 21, 1904-1912DOI: (10.1016/j.joca.2013.09.011) Copyright © 2013 Terms and Conditions

Fig. 3 Cartilage thickness at four different anatomical sites in the human knee (MFC and MTN) and ankle (TAL and DTB; mean ± 95% confidence limits, n = 10). Star (★) indicates significantly different thicknesses between knee vs ankle cartilage (P < 0.05). Osteoarthritis and Cartilage 2013 21, 1904-1912DOI: (10.1016/j.joca.2013.09.011) Copyright © 2013 Terms and Conditions

Fig. 4 Cell volume per unit tissue volume (VV) within cartilage from four different anatomical sites in the human knee (MFC and MTN; mean ± 95% confidence limits, n = 8) and ankle (TAL and DTB; n = 10). Data were acquired from confocal microscopy of a) superficial zone, b) transitional zone, and c) radial zone cartilage. Star (★) indicates significant differences in VV between knee vs ankle cartilage, or between cartilage from convex (MFC and TAL) vs concave (MTN and DTB) articular surfaces (P < 0.05). Osteoarthritis and Cartilage 2013 21, 1904-1912DOI: (10.1016/j.joca.2013.09.011) Copyright © 2013 Terms and Conditions

Fig. 5 Pericellular (white bars) and interterritorial (black bars) matrix volume per cell within cartilage from superficial, transitional and radial tissue zones. Data were acquired from a combination of confocal and EM of a) medial tibia not meniscus-covered (MTN; n = 5) and b) talus (TAL; n = 7) cartilage. Osteoarthritis and Cartilage 2013 21, 1904-1912DOI: (10.1016/j.joca.2013.09.011) Copyright © 2013 Terms and Conditions