4.7 Dividing Polynomials.

Slides:



Advertisements
Similar presentations
Long and Synthetic Division of Polynomials Section 2-3.
Advertisements

§ 6.4 Division of Polynomials. Blitzer, Intermediate Algebra, 5e – Slide #2 Section 6.4 Division of Polynomials In this section we will look at dividing.
3.4 Division of Polynomials BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 Procedure: To divide a polynomial (in the numerator) by a monomial.
4.5 Multiplying Polynomials
EXAMPLE 1 Use polynomial long division
1 Section 1.9 Division of Algebraic Expressions. 2 I. Dividing Monomials Divide the numerical coefficients; then divide the literal numbers (variables)
Warm up. Lesson 4-3 The Remainder and Factor Theorems Objective: To use the remainder theorem in dividing polynomials.
Dividing Polynomials Intro - Chapter 4.1. Using Long Division Example 1: Dividing Polynomials DIVISOR DIVIDEND REMAINDER QUOTIENT.
§ 6.4 Division of Polynomials. Blitzer, Intermediate Algebra, 5e – Slide #2 Section 6.4 Division of Polynomials Dividing a Polynomial by a Monomial To.
Example 2 Combining Graphical and Algebraic Methods Chapter 6.4 Solve the equation.
Dividing Polynomials  Depends on the situation.  Situation I: Polynomial Monomial  Solution is to divide each term in the numerator by the monomial.
Section 5Chapter 5. 1 Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives 2 3 Dividing Polynomials Divide a polynomial by a monomial. Divide.
Section 7.3 Products and Factors of Polynomials.
Monomials – Product and Quotient Remember your rules for multiplying and dividing variables…- When multiplying like variables, ADD your exponents When.
10-6 Dividing Polynomials Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Section 5-3 Dividing Polynomials Created by: John M and Nick M.
Splash Screen. Example 1 Divide a Polynomial by a Monomial Answer: a – 3b 2 + 2a 2 b 3 Sum of quotients Divide. = a – 3b 2 + 2a 2 b 3 a 1 – 1 = a 0 or.
5-3 Dividing Polynomials Objectives Students will be able to: 1) Divide polynomials using long division 2) Divide polynomials using synthetic division.
Warm up  Divide using polynomial long division:  n 2 – 9n – 22 n+2.
UNIT 2 – QUADRATIC, POLYNOMIAL, AND RADICAL EQUATIONS AND INEQUALITIES Chapter 6 – Polynomial Functions 6.3 – Dividing Polynomials.
5. Divide 4723 by 5. Long Division: Steps in Dividing Whole Numbers Example: 4716  5 STEPS 1. The dividend is The divisor is 5. Write.
Copyright © 2010 Pearson Education, Inc. All rights reserved Sec
Dividing Polynomials Unit 6-5. Divide a polynomial by a monomial. Unit Objectives: Objective 1 Divide a polynomial by a polynomial of two or more terms.
6.3 Dividing Polynomials 1. When dividing by a monomial: Divide each term by the denominator separately 2.
Dividing Polynomials – Part 2 Honors Math – Grade 8.
Section 6.6 Dividing Polynomials  Dividing a Monomial by a Monomial  Dividing a Polynomial by a Monomial  Dividing a Polynomial by a Polynomial Long.
Copyright © 2015, 2008, 2011 Pearson Education, Inc. Section 6.3, Slide 1 Chapter 6 Polynomial Functions.
Bellwork  Divide (No Calculators)  1. 8,790÷2  ,876÷32  3. 9,802,105÷30 Multiply #4 4. (5x-6)(2x+3)
Copyright © 2014, 2010, and 2006 Pearson Education, Inc. Chapter 4 Polynomials.
SOLUTION Divide a polynomial by a monomial EXAMPLE 1 Divide 4x 3 + 8x x by 2x. Method 1 : Write the division as a fraction. Write as fraction. Divide.
Sullivan Algebra and Trigonometry: Section R.6 Polynomial Division Objectives of this Section Divide Polynomials Using Long Division Divide Polynomials.
WARM UP Simplify DIVISION OF POLYNOMIALS OBJECTIVES  Divide a polynomial by a monomial.  Divide two polynomials when the divisor is not a monomial.
Converting Fractions to Decimals 1.Arrange the numerator as the dividend and the denominator as the divisor. 4 3 ) ) DIVISOR DIVIDEND NUMERATOR.
Converting Between Improper Fractions and Mixed Numbers.
MAIN IDEAS DIVIDE POLYNOMIALS USING LONG DIVISION. 6.3 Dividing Polynomials.
3.2 Division of Polynomials. Remember this? Synthetic Division 1. The divisor must be a binomial. 2. The divisor must be linear (degree = 1) 3. The.
Dividing Monomials by Monomials. Think Back to September What is the exponent rule for dividing same bases? When dividing same bases subtract exponents.
Dividing a Polynomial by a Binomial
Dividing Polynomials Using Factoring (11-5)
Dividing Polynomials.
Dividing Polynomials What you’ll learn
5.2 Dividing Polynomials.
Warm-up 6-4.
Dividing Polynomials.
Dividing a Polynomial By a Monomial Lesson 27(2).
Polynomial Division.
Copyright © 2008 Pearson Education, Inc
Aim: How do we divide a polynomial by a binomial?
5-3 Dividing Polynomials
Warm-up: Do you remember how to do long division? Try this: (without a calculator!)
4.3 Division of Polynomials
Dividing Polynomials.
Dividing Polynomials.
Dividing Polynomials.
Exponents, Polynomials, and Polynomial Functions
Dividing Polynomials.
Chapter 5 Section 4 and 5.
Unit 1. Day 8..
Dividing Polynomials.
Dividing polynomials This PowerPoint presentation demonstrates two different methods of polynomial division. Click here to see algebraic long division.
Dividing Polynomials.
Dividing Polynomials © 2002 by Shawna Haider.
Dividing Polynomials.
4.3 Synthetic Division Objectives:
Section 5.6 Dividing Polynomials.
Lesson 7.4 Dividing Polynomials.
Algebra 1 Section 9.6.
Synthetic Division Notes
Warmup.
Presentation transcript:

4.7 Dividing Polynomials

Divide a polynomial by a monomial. Objective 1 Divide a polynomial by a monomial. Slide 4.7-3

Dividing a polynomial by a monomial. We add two fractions with a common denominator as follows. In reverse this statement gives a rule for dividing a polynomial by a monomial: Dividing A Polynomial by a Monomial To divide a polynomial by a monomial, divide each term of the polynomial by the monomial: Examples: and Divisor Dividend Quotient Slide 4.7-4

Dividing a Polynomial by a Monomial CLASSROOM EXAMPLE 1 Dividing a Polynomial by a Monomial Divide 12m6 + 18m5 + 30m4 by 6m2. Solution: Slide 4.7-5

Dividing a Polynomial by a Monomial CLASSROOM EXAMPLE 2 Dividing a Polynomial by a Monomial Divide Solution: Slide 4.7-6

CLASSROOM EXAMPLE 3 Divide −8p4 − 6p3 − 12p5 by −3p3. Solution: Dividing a Polynomial by a Monomial with a Negative Coefficient Divide −8p4 − 6p3 − 12p5 by −3p3. Solution: Slide 4.7-7

Dividing a Polynomial by a Monomial CLASSROOM EXAMPLE 4 Dividing a Polynomial by a Monomial Divide Solution: Slide 4.7-8

Divide a polynomial by a polynomial. Objective 2 Divide a polynomial by a polynomial. Slide 4.7-9

Divide a polynomial by a polynomial. To divide a polynomial by a polynomial (other than a monomial). Both polynomials must first be written in descending powers. Slide 4.7-10

Divide a polynomial by a polynomial. Slide 4.7-11

Dividing a Polynomial by a Polynomial CLASSROOM EXAMPLE 5 Dividing a Polynomial by a Polynomial Divide Solution: Slide 4.7-12

Dividing a Polynomial by a Polynomial CLASSROOM EXAMPLE 6 Dividing a Polynomial by a Polynomial Divide Solution: Remember to include “ ” as part of the answer. Slide 4.7-13

Dividing into a Polynomial with Missing Terms CLASSROOM EXAMPLE 7 Dividing into a Polynomial with Missing Terms Divide x3 − 8 by x − 2. Solution: Slide 4.7-14

Dividing by a Polynomial with Missing Terms CLASSROOM EXAMPLE 8 Dividing by a Polynomial with Missing Terms Divide Solution: Slide 4.7-15

CLASSROOM EXAMPLE 9 Divide 3x3 + 7x2 + 7x + 11 by 3x + 6. Solution: Dividing a Polynomial When the Quotient Has Fractional Coefficients Divide 3x3 + 7x2 + 7x + 11 by 3x + 6. Solution: Slide 4.7-16