Dr. Clincy Professor of CS

Slides:



Advertisements
Similar presentations
Boolean Algebra and Combinational Logic
Advertisements

ENGIN112 L13: Combinational Design Procedure October 1, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 13 Combinational Design Procedure.
CS 151 Digital Systems Design Lecture 13 Combinational Design Procedure.
Computer Organization and Assembly Language: Chapter 7 The Karnaugh Maps September 30, 2013 By Engineer. Bilal Ahmad.
IKI a-Simplification of Boolean Functions Bobby Nazief Semester-I The materials on these slides are adopted from those in CS231’s Lecture.
Overview Part 2 – Circuit Optimization 2-4 Two-Level Optimization
Boolean Algebra and Logic Simplification
Digital Logic and Design Vishal Jethva Lecture No. 10 svbitec.wordpress.com.
1 Fundamentals of Computer Science Propositional Logic (Boolean Algebra)
1 Chapter 5 Karnaugh Maps Mei Yang ECG Logic Design 1.
CHAPTER 1 INTRODUCTION TO DIGITAL LOGIC. K-Map (1)  Karnaugh Mapping is used to minimize the number of logic gates that are required in a digital circuit.
1 Digital Logic Design Week 5 Simplifying logic expressions.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. Circuit Optimization Logic and Computer Design Fundamentals.
Combinational Logic Part 2: Karnaugh maps (quick).
Circuit Minimization. It is often uneconomical to realize a logic directly from the first logic expression that pops into your head. Canonical sum and.
Minimisation ENEL111. Minimisation Last Lecture  Sum of products  Boolean algebra This Lecture  Karnaugh maps  Some more examples of algebra and truth.
T,JK-flip-flop, Midterm 1 Revision Decoders and Multiplexers Prof. Sin-Min Lee Department of Computer Science San Jose State University.
CS1Q Computer Systems Lecture 7
February 2, 2004CS 2311 Karnaugh maps Last time we saw applications of Boolean logic to circuit design. – The basic Boolean operations are AND, OR and.
CS231 Boolean Algebra1 Summary so far So far: – A bunch of Boolean algebra trickery for simplifying expressions and circuits – The algebra guarantees us.
1 Digital Logic Design Week 5&6 cont’d Revision for Quiz 2/Exam.
CS151 Introduction to Digital Design Chapter Map Simplification.
Sum-of-Products (SOP)
Chapter 3 Special Section Focus on Karnaugh Maps.
Karnaugh Maps (K-Maps)
KARNAUGH MAP A Karnaugh map (K Map) is a pictorial method used to minimize boolean expressions without having to use boolean algebra theorems and equation.
1 Gate Level Minimization EE 208 – Logic Design Chapter 3 Sohaib Majzoub.
Revision Mid 1 Prof. Sin-Min Lee Department of Computer Science.
Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 7 – Karnaugh Maps.
1 EENG 2710 Chapter 3 Simplification of Switching Functions.
Digital Logic & Design Dr. Waseem Ikram Lecture 09.
Dr. ClincyLecture Slide 1 CS6020- Chapter 3 (3A and ) Dr. Clincy Professor of CS First Exam - Tuesday, September 6th Coverage: All subjects up to.
CHAPTER 3 Simplification of Boolean Functions
Lecture 4 Nand, Nor Gates, CS147 Circuit Minimization and
CS Chapter 3 (3A and ) Part 1 of 8
CS Chapter 3 (3A and ) Part 1 of 8
Circuit analysis summary
Lecture 3 Gunjeet Kaur Dronacharya Group of Institutions
Karnaugh Maps.
Dr. Clincy Professor of CS
Lecture 5 Dr. Nermin Hamza.
Digital Logic and Design
Dr. Clincy Professor of CS
Karnaugh Maps (K-Maps)
Dr. Clincy Professor of CS
Karnaugh Maps References:
Karnaugh Maps References: Lecture 4 from last semester
Dr. Clincy Professor of CS
BASIC & COMBINATIONAL LOGIC CIRCUIT
Karnaugh Maps Topics covered in this presentation: Karnaugh Maps
SYEN 3330 Digital Systems Chapter 2 – Part 4 SYEN 3330 Digital Systems.
Dr. Clincy Professor of CS
CS Chapter 3 (3A and ) Part 3 of 8
Karnaugh Mapping Digital Electronics
Dr. Clincy Professor of CS
COE 202: Digital Logic Design Combinational Logic Part 3
CS Chapter 3 (3A and ) – Part 2 of 5
Dr. Clincy Professor of CS
Unit 3 Simplification and K-map
CS Chapter 3 (3A and ) – Part 3 of 5
Dr. Clincy Professor of CS
Overview Part 2 – Circuit Optimization
Lab Instructors will overview the MSP430
3-Variable K-map AB/C AB/C A’B’ A’B AB AB’
Chapter 3 Special Section
Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can.
Basic circuit analysis and design
Karnaugh Map Method By: Asst Lec. Besma Nazar Nadhem
Circuit Simplification and
Presentation transcript:

Dr. Clincy Professor of CS CS 3501 - Chapter 3 (3A and 10.2.2) Dr. Clincy Professor of CS Dr. Clincy Lecture Slide 1 1

Kmaps - Introduction Simplification of Boolean functions leads to simpler (and usually faster) digital circuits. Simplifying Boolean functions using identities is time-consuming and error-prone. Kmaps presents an easy, systematic method for reducing Boolean expressions. In 1953, Maurice Karnaugh was a telecommunications engineer at Bell Labs. While exploring the new field of digital logic and its application to the design of telephone circuits, he invented a graphical way of visualizing and then simplifying Boolean expressions. This graphical representation, now known as a Karnaugh map, or Kmap, is named in his honor. Dr. Clincy Lecture

Description of Kmaps and Terminology A Kmap is a matrix consisting of rows and columns that represent the output values of a Boolean function. The output values placed in each cell are derived from the minterms of a Boolean function. A minterm is a product term that contains all of the function’s variables exactly once, either complemented or not complemented. For example, the minterms for a function having the inputs x and y are: Consider the Boolean function, Its minterms are: Dr. Clincy Lecture

Description of Kmaps and Terminology Similarly, a function having three inputs, has the minterms that are shown in this diagram. Dr. Clincy Lecture

Truth Table to Kmap Example A Kmap has a cell for each minterm. This means that it has a cell for each line for the truth table of a function. The truth table for the function F(x,y) = xy is shown at the right along with its corresponding Kmap. Dr. Clincy Lecture

Another Truth Table to Kmap Example As another example, we give the truth table and KMap for the function, F(x,y) = x + y at the right. This function is equivalent to the OR of all of the minterms that have a value of 1. Thus: Dr. Clincy Lecture

Kmap Simplification for Two Variables Of course, the minterm function that we derived from our Kmap was not in simplest terms. We can, however, reduce our complicated expression to its simplest terms by finding adjacent 1s in the Kmap that can be collected into groups that are powers of two. In our example, we have two such groups. Can you find them? Dr. Clincy Lecture

Kmap Simplification Rules for Two Variables The rules of Kmap simplification are: Groupings can contain only 1s; no 0s. Groups can be formed only at right angles; diagonal groups are not allowed. The number of 1s in a group must be a power of 2 – even if it contains a single 1. The groups must be made as large as possible. Groups can overlap and wrap around the sides of the Kmap. Dr. Clincy Lecture

Kmap Simplification for Three Variables A Kmap for three variables is constructed as shown in the diagram below. We have placed each minterm in the cell that will hold its value. Notice that the values for the yz combination at the top of the matrix form a pattern that is not a normal binary sequence. Pattern must be like this. Only 1 variable changes at a time Dr. Clincy Lecture

Kmap Simplification Example for Three Variables Consider the function: Its Kmap is given: Reduces to F(x) = z. Dr. Clincy Lecture

2nd Kmap Simplification Example for Three Variables Now for a more complicated Kmap. Consider the function: Its Kmap is shown below. There are (only) two groupings of 1s. Our reduced function is: Dr. Clincy Lecture

Kmap Simplification for Four Variables Our model can be extended to accommodate the 16 minterms that are produced by a four-input function. This is the format for a 16-minterm Kmap. Dr. Clincy Lecture

Kmap Simplification Example for Four Variables We have populated the Kmap shown below with the nonzero minterms from the function: Reduced to: Dr. Clincy Lecture

Kmap Simplification for Four Variables It is possible to have a choice as to how to pick groups within a Kmap, while keeping the groups as large as possible. The (different) functions that result from the groupings below are logically equivalent. Dr. Clincy Lecture

Don’t Care Conditions Real circuits don’t always need to have an output defined for every possible input. For example, some calculator displays consist of 7- segment LEDs. These LEDs can display 2 7 -1 patterns, but only ten of them are useful. If a circuit is designed so that a particular set of inputs can never happen, we call this set of inputs a don’t care condition. They are very helpful to us in Kmap circuit simplification. Dr. Clincy Lecture

Don’t Care Conditions In a Kmap, a don’t care condition is identified by an X in the cell of the minterm(s) for the don’t care inputs, as shown below. In performing the simplification, we are free to include or ignore the X’s when creating our groups. Reduction using don’t cares: Dr. Clincy Lecture

Don’t Care Example Could have the case where some input combinations do not need to be evaluated – these input combinations are called “don’t cares” For a k-map, use “don’t cares” in the case of creating groups of 2, 4, 8, … set of 1s – use “don’t cares as 1s to help minimize the circuit – at least one 1 has to be in a group of don’t cares

More Kmap Examples When adjacent squares contain 1s, indicates the possibility of an algebraic simplication Example of a 3-variable k-map Inputs around edge and output in the boxes