“Teach A Level Maths” Vol. 1: AS Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 1: AS Core Modules
Advertisements

“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
34: A Trig Formula for the Area of a Triangle
“Teach A Level Maths” Vol. 2: A2 Core Modules
18: Circles, Tangents and Chords
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
10: Polynomials © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
50: Vectors © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
40: Radians, Arc Length and Sector Area
Coordinate geometry © Christine Crisp.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
39: Trigonometric ratios of 3 special angles © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
44: Stretches of the Trigonometric Functions © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
38: The graph of tan  © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
13: Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
3: Quadratic Expressions Expanding Brackets and
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
39: Trigonometric ratios of 3 special angles
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Lucan Community College Leaving Certificate Mathematics
18: Circles, Tangents and Chords
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
34: A Trig Formula for the Area of a Triangle
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes.
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
40: Radians, Arc Length and Sector Area
18: Circles, Tangents and Chords
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
Presentation transcript:

“Teach A Level Maths” Vol. 1: AS Core Modules 1: Distance between two points. Thursday, 02 August 2018 © Christine Crisp

Using Pythagoras’ theorem: This square root is called a surd.

A formula for the length of the line joining A to B Using Pythagoras’ theorem:

e.g. Find the length of the line joining the point to Solution: This can be simplified: 25 is a perfect square, so can be square rooted

Exercise Find the length of the line joining the point to Solution:

“Teach A Level Maths” Vol. 1: AS Core Modules 2: Finding the mid-point of a line segment. Thursday, 02 August 2018 © Christine Crisp

Further Practice: Exercise 1A Page 5/6 Complete all 6 questions in class, finishing for homework if necessary.

The mid-point is the average of the end points: M X The mid-point is the average of the end points:

A formula for the Mid-Point of AB M X The mid-point is the average of the end points: or

Exercise Find the mid-point, M of the line joining to Solution:

SUMMARY The mid-point, M, of the line joining to is the average of the end points. The length of the line joining to is:

Further Practice: Exercise 1B Page 7/8 Complete all 6 questions in class, finishing for homework if necessary.

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

SUMMARY The mid-point, M, of the line joining to is the average of the end points. The length of the line joining to is:

Solution: e.g. Find the mid-point, M of the line joining to

25 is a perfect square, so can be square rooted Solution: e.g. Find the length of the line joining the point to