Tiina Salmi, Tampere University of Technology

Slides:



Advertisements
Similar presentations
2 nd Joint HiLumi LHC – LARP Annual Meeting INFN Frascati – November 14 th to 16 th 2012 LBNL: Helene Felice – Tiina Salmi – Ray Hafalia – Maxim Martchevsky.
Advertisements

Protection study options for HQ01e-3 Tiina Salmi QXF meeting, 27 Nov 2012.
Optimisation of Roebel cable for HTS accelerator magnets
Report from WAMHTS-2 and opportunities for HTS Naoyuki Amemiya Kyoto University 1.
Structural design of EuCARD2 magnets
Mechanical Properties of Roebel Coated Conductor Cable A.Kario 1, S. Otten 1,2, C. M. Bayer 1, M. Vojenciak 1,3, A. Kling 1, B. Ringsdorf 1, B. Runtsch.
1 QXF heater proposal M. Marchevsky, H. Felice, T. Salmi, D. Cheng, G. Sabbi, LBNL.
MQXF state of work and analysis of HQ experimental current decays with the QLASA model used for MQXF Vittorio Marinozzi 10/28/
EuCARD 2012 Collaboration Meeting Warsaw University of Technology 22 th April 2012 WP-7 / Task 4 Very high field magnet Introduction/objectives/partners.
Future Magnets Report from WP10
1 QXF heater design: current status and the path forward M. Marchevsky (LBNL) 03/06/2014 D.W. Cheng, H. Felice, G. Sabbi (LBNL), G. Ambrosio (FNAL)
EuCARD2 Magnet Status and action plan
Design optimization of the protection heaters for the LARP high-field Nb 3 Sn quadrupoles M. Marchevsky, D. W. Cheng, H. Felice, G. Sabbi, Lawrence Berkeley.
1 QXF heater parameters G. Chlachidze, M. Marchevsky March 13, 2014.
Development of the EuCARD Nb 3 Sn Dipole Magnet FRESCA2 P. Ferracin, M. Devaux, M. Durante, P. Fazilleau, P. Fessia, P. Manil, A. Milanese, J. E. Munoz.
EuCARD-2 is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement EuCARD-2 WP-10 Status.
QXF protection heater design : Overview and status Tiina Salmi QXF quench protection meeting April 30, 2013.
11 T Nb3Sn Demonstrator Dipole R&D Strategy and Status
MQXF protection – comparison between 1 or 2 power supplies Vittorio Marinozzi 06/08/
E. Todesco PROTECTION IN MAGNET DESIGN E. Todesco CERN, Geneva Switzerland With help from B. Auchmann, L. Bottura, H. Felice, J. Fleiter, T. Salmi, M.
Test Program and Results Guram Chlachidze for FNAL-CERN Collaboration September 26-27, 2012 Outline Test program Quench Performance Quench Protection Magnetic.
QXF quench heater delay simulations Tiina Salmi, T. Salmi.
1 Quench Protection Workshop - 04/29/2014 QXF heater design M. Marchevsky, D.W. Cheng (LBNL) E. Todesco (CERN) T. Salmi (Tampere UT) G. Chalchidze, G.
FRESCA II dipole review, 28/ 03/2012, Ph. Fazilleau, M. Durante, 1/19 FRESCA II Dipole review March 28 th, CERN Magnet protection Protection studies.
Prospects for the use of HTS in high field magnets for future accelerator facilities A. Ballarino CERN, Geneva, Switzerland.
1 QXF / SQXF heater design update M. Marchevsky (12/03/13)
Quench Protection Maximum Voltages G. Ambrosio, V. Marinozzi, M. Sorbi WG Video-Mtg January 14, 2015.
HTS Roebel cables for the EuCARD2 “Future Magnets”
MQXF protection: work in progress and plans Vittorio Marinozzi 9/23/ QLASA calibration with HQ02 data.
Tiina Salmi and Antti Stenvall, Tampere University of technology, Finland FCCW2016 Roma, April 13 th, 2016 Quench protection of the 16T dipoles for the.
Study of the HTS Insert Quench Protection M. Sorbi and A. Stenvall 1 HFM-EuCARD, ESAC meeting, WP 7.4.1CEA Saclay 28 feb. 2013,
Protection heater design for MQXF outer layer *Using long Super- Heating Stations for ensuring quenhces at low currents* Tiina Salmi, Tampere.
Heaters for the QXF magnets: designs and testing and QC M. Marchevsky (LBNL)
HQ02A2 TEST RESULTS November 7, 2013 FERMILAB. HQ02 test at Fermilab 2  First HQ quadrupole with coils (#15-17, #20) of the optimized design o Only coil.
2 nd LARP / HiLumi Collaboration Mtg, May 9, 2012LHQ Goals and Status – G. Ambrosio 11 Quench Protection of Long Nb 3 Sn Quads Giorgio Ambrosio Fermilab.
MQXFS1 Protection heater delays vs. Simulations 9 May 2016 Tiina Salmi, Tampere university of technology Acknowledgement: Guram Chlachidze (FNAL), Emmanuele.
CHATS-AS 2011clam1 Integrated analysis of quench propagation in a system of magnetically coupled solenoids CHATS-AS 2011 Claudio Marinucci, Luca Bottura,
Hot-Spot Temperature Experiment Chats Workshop 10 th October 2013 Kamil Sedlak, Pierluigi Bruzzone EPFL-CRPP, Villigen, Switzerland.
CERN QXF Conductor Procurement and Cable R&D A.Ballarino, B. Bordini and L. Oberli CERN, TE-MSC-SCD LARP Meeting, Napa, 9 April 2013.
Quench protection of Bi-2212 magnets Tengming Shen Fermi National Accelerator Laboratory WAMHTS-3, Lyon, France, Sept 11, Work supported by U.S.
TABLE IV Stress Evolution in the External Tube for Je = 250 A/mm²
Characterization of REBCO Tape and Roebel Cable at CERN
June 28, 2017 Tiina Salmi and Timo Tarhasaari, TUT
Mechanical behavior of the EuroCirCol 16 T Block-type dipole magnet during a quench Junjie Zhao, Tiina Salmi, Antti stenvall, Clement Lorin 1.
Feather 2 Technology.
Hervé Allain, R. van Weelderen (CERN)
Milan Majoros, Chris Kovacs, G. Li, Mike Sumption, and E.W. Collings
Status of QLASA Tool Adapter
WORK IN PROGRESS F C C Main Quadrupoles FCC week 2017
Producing electricity
Winding tests on Roebel cables
Lucio Rossi (CERN) WP10 coordinator
Task T HTS Dipole Magnet Design and Construction
Task 10.3 : 5T HTS Dipole Magnet Design and Construction
WP-7 / Task 4 Very high field magnet
C. J. Kovacs, M. Majoros, M. D. Sumption, E. Collings
Protection of FCC 16 T dipoles
Update on voltage calculations
Naoyuki Amemiya Kyoto University
Kyoto meeting.
Protection Database Tool
Quench Protection Measurements & Analysis
EuCARD2 WP 10.2 HTS Conductor
CEA Nb3Sn quadrupole magnet : test results and future
HIGH LUMINOSITY LHC: MAGNETS
Preliminary study of HTS option for CEPC detector magnet
Guram Chlachidze Stoyan Stoynev
Qingjin XU Institute of High Energy Physics (IHEP),
Long term behavior of MQXFS1
On behalf of the STEAM team
Presentation transcript:

WAMHTS-2 Summary: Modeling heater delays and quench propagation in a YBCO coil Tiina Salmi, Tampere University of Technology EuCARD-2 Task 10.3 meeting Dec.16th For the entire presentation see https://indico.cern.ch/event/319762/timetable/#20141114.detailed Thanks to : A. Stenvall (TUT) , G. Kirby (CERN), E. Härö (TUT), J. Van Nugteren (CERN)

Tiina Salmi WAMHTS-2, Nov 14 2014 Heat generation in heater: One coil turn Heat diffusion from heater to cable: Quench when Ic == Iop Account for current redistribution Heat generation in cable: T. Salmi et al., IEEE TAS. 24(4), 2014 T. Salmi et al., IEEE TAS25(3), 2015 Tiina Salmi WAMHTS-2, Nov 14 2014

Analyzed cable based on FM0 15-tape Roebel cable modeled as stacked tape cable 2 geometries conserving Acable and material fractions Heater 15 Tapes 5.7 mm Cable 1 Wt = 12 mm Wx = 5.5 mm Heater 7.5 Tapes 11.4 mm Cable 2 G. Kirby and M. Durante, EuCARD2 Milestone report, MS64, 2014 Jc(B,T,α): J. Fleiter (see talk by G. Kirby) Tiina Salmi WAMHTS-2, Nov 14 2014

Heater with 4 times more energy than typical LTS heater ASC-2014: In HTS heater typical LTS heater (25 µm thick with 50 W/cm2, τRC 50 ms) does not quench for Tcs > ~20 K Here was analyzed a 50 µm thick stainless steel heater with 200 W/cm2 (40 W/mm3) and τRC 50 ms (50 µm Kapton) H. Felice et al., IEEE TAS 19(3), 2009 T. Salmi et al., IEEE TAS 24(3), 2014 T. Salmi and A. Stenvall, IEEE TAS 25(3), 2015 Tiina Salmi WAMHTS-2, Nov 14 2014

Delay to hotspot under heater 1-D with ” --- ” Cable 2 C B A Delays ~55 ms if Tcs ~22-23 K Delays >100 ms if Tcs >28 K Need 40 – 80 mm long heating stations (roebel?) Simulation using geom. ”Cable 1” had ~50% shorter delays A: 4.5 K, 6 kA, 15 T (5°): Tcs = 22.3 K B: 4.5 K, 10 kA, 10 T (5°): Tcs = 22.7 K C: 4.5 K, 6 kA, 10 T (5°): Tcs = 28.8 K D: 35 K, 6 kA, 1.5 T (5°) : Tcs = 52.5 K Jc(B,T,α): J. Fleiter (see talk by G. Kirby) Tiina Salmi WAMHTS-2, Nov 14 2014

Tiina Salmi WAMHTS-2, Nov 14 2014 NZPV I = 6 kA (4.5 K) B = 10  15 T NZPV = 0.3  0.5 m/s B = 10 T (4.5 K) I = 6  10 kA NZPV = 0.3  0.8 m/s Geometry does not matter Consistent with other studies B A C Cable 1 ” --- ” Cable 2 ” __” A: 4.5 K, 6 kA, 15 T (5°): Tcs = 22.3 K B: 4.5 K, 10 kA, 10 T (5°): Tcs = 22.7 K C: 4.5 K, 6 kA, 10 T (5°): Tcs = 28.8 K Tiina Salmi WAMHTS-2, Nov 14 2014

Delay to quench entire cable Max period 120 - 150 mm Or 300 K under heater before all quenched Coverage min 30-50% (compare to 10-30% in LTS) If protected with heaters, better to find a way to cover all with the heater! Cable 2 A Delay (ms) B Period (mm) A: 4.5 K, 6 kA, 15 T (5°): Tcs = 22.3 K B: 4.5 K, 10 kA, 10 T (5°): Tcs = 22.7 K C: 4.5 K, 6 kA, 10 T (5°): Tcs = 28.8 K Tiina WAMHTS-2, Nov 14 2014

Tiina Salmi WAMHTS-2, Nov 14 2014 Conclusion The CoHDA heater simulation tool now includes also quench propagation Analysed heater delays in FM0 cable (modeled as stacked tape cable) Simulated delays were ~55 ms for Tcs ~22 K, and > 100 ms for Tcs > 28 K Slow quench propagation (< 1 m/s) suggested that better to try to cover the entire cable with heater and not rely on heating stations Problems: Large energy input to magnet, inputs for heater power leads Must investigate also other protection options than heaters Next step: Combine heater delays and quench propagation to a current decay model Tiina Salmi WAMHTS-2, Nov 14 2014