チャカルタヤ山宇宙線共同実験 玉田雅宣 (近畿大学) 本田 建 (山梨大学) 他Chacaltaya Collaborator.

Slides:



Advertisements
Similar presentations
Alessia Tricomi University and INFN Catania on behalf of the LHCf Collaboration The LHCf experiment at LHC ISVHECRI08 - XV International Symposium on Very.
Advertisements

AGASA Results Max-Planck-Institut für Physik, München, Germany Masahiro Teshima for AGASA collaboration at 3 rd Int. Workshop on UHECR, Univ. Leeds.
Progress on ACORDE (ALICE Cosmic ray detector) Ildefonso León for ACORDE-ALICE group.
Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays (EAS-UAP) O. Martínez a, E. Moreno a, G. Pérez a, H. Salazar.
A.U. Kudzhaev, D.D. Dzhappuev, V.V. Alekseenko, A.B. Chernyev, N.F. Klimenko, A.S. Lidvansky, A.B. Chernyev, N.F. Klimenko, A.S. Lidvansky, V.B. Petkov.
Knee 領域での空気シャワー実験 研究会「超高エネルギー宇宙線とハドロン 2008 年 4 月 25 日 瀧田 正人 東京大学宇宙線研究所.
ATLAS LHCf Detector 140m away from the interaction point LHCf: calibration of hadron interaction models for high energy cosmic-ray physics at the LHC energy.
Aspen, April 19, 2007Tom Gaisser eV decade Breakout summary.
Ultra high energy cosmic rays: highlights of recent results J. Matthews Pierre Auger Observatory Louisiana State University 19 August August.
Status of Cosmic Rays Physics at the Knee Andrea Chiavassa Università and INFN Torino NOW 2006 Otranto 9-16 September 2006.
Yu. Stenkin, UHECR'20081 On PRISMA project (proposal) Yuri V. Stenkin INR RAS.
Constraints of hadronic interaction models from the cosmic muon observations. L.G. Dedenko, A.V. Lukyashin, G.F. Fedorova, T.M. Roganova M.V. Lomonosov.
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
TAUP Conference, Sendai September The primary spectrum in the transition region between direct and indirect measurements (10 TeV – 10 PeV)
LBL November 3, 2003 selection & comments 14 June 2004 Thomas K. Gaisser Anatomy of the Cosmic-ray Energy Spectrum from the knee to the ankle.
Effect of air fluorescence properties on the reconstructed energy of UHECR José Ramón Vázquez, María Monasor, Fernando Arqueros Universidad Complutense.
Latest Results from the MINOS Experiment Justin Evans, University College London for the MINOS Collaboration NOW th September 2008.
Humberto Salazar (FCFM-BUAP) for the Pierre Auger Collaboration, CTEQ- Fermilab School Lima, Peru, August 2012 Ultrahigh Cosmic Rays: The highest energy.
Status and first results of the KASCADE-Grande experiment
Energy Spectrum C. O. Escobar Pierre Auger Director’s Review December /15/2011Fermilab Director's Review1.
Low-Energy Interaction Models in CORSIKA Dieter Heck, Ralph Engel Forschungszentrum Karlsruhe, Germany Giuseppe Battistoni, Alberto Fassò, Alfredo Ferrari,
The muon component in extensive air showers and its relation to hadronic multiparticle production Christine Meurer Johannes Blümer Ralph Engel Andreas.
Hadronic interaction studies with the ARGO-YBJ experiment (5,800 m 2 ) 10 Pads (56 x 62 cm 2 ) for each RPC 8 Strips (6.5 x 62 cm 2 ) for each Pad ( 
Air-showers, bursts and high-energy families detected by hybrid experiment at Mt.Chacaltaya M.Tamada Kinki University M.Tamada ICRC2011, Beijing, 15 Aug.
Study of the Atmospheric Muon and Neutrinos for the IceCube Observatory Ryan Birdsall Paolo Desiati, Patrick Berghaus,
Yu.V. Stenkin, Moscow'20111 The PRISMA project Yuri V. Stenkin Institute for Nuclear Res. of RAS, Moscow, Russia.
Hybrid measurement of CR light component spectrum by using ARGO-YBJ and WFCTA Shoushan Zhang on behalf of LHAASO collaboration and ARGO-YBJ collaboration.
“The Cosmic Ray composition in the knee region and the hadronic interaction models” G. Navarra INFN and University, Torino, Italy For the EAS-TOP Collaboration.
Cosmic-ray physics at CERN (LEP and LHC experiments) Arturo Fernández, Mario Rodriguez Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autonoma.
Cosmic ray physics in ALICE Katherin Shtejer Díaz For the ALICE Collaboration LatinoAmerican Workshop on High Energy Physics: Particles and Strings, Havana,
The KASCADE-Grande Experiment: an Overview Andrea Chiavassa Universita’ di Torino for the KASCADE-Grande Collaboration.
Cosmic Rays from to eV. Open Problem and Experimental Results. (KASCADE-Grande view) Very High Energy Phenomena in the Universe XLIV th Rencontres.
Study of VHE Cosmic Ray Spectrum by means of Muon Density Measurements at Ground Level I.I. Yashin Moscow Engineering Physics Institute,
What we do know about cosmic rays at energies above eV? A.A.Petrukhin Contents 4 th Round Table, December , Introduction. 2. How these.
Juan Carlos Arteaga-Velázquez for the KASCADE-Grande Collaboration Institute of Physics and Mathematics Universidad Michoacana, Mexico 132nd ICRCJ.C.Arteaga.
Measurement devices Cloud chamber Geiger counter Bubble chamber Nuclear emulsion 2.
A Northern Sky Survey for Both TeV CR anisotropy and  -ray Sources with Tibet Air Shower Array Hongbo Hu For Tibet AS  collaboration.
Physics whit ACORDE (ALICE Cosmic ray detector) Arturo Fernández for ACORDE-ALICE group.
/ 15 1/ 31 Cosmic ray data and their interpretation: the Tibet hybrid EAS experiment -- Primary energy spectra of Cosmic Rays at the knee and tests of.
Space-time structure of signals in scintillation detectors of EAS L.G. Dedenko, G.F. Fedorova, T.M. Roganova and D.A. Podgrudkov.
Yu.V. Stenkin, 32 ICRC. Beijing'20111 The PRISMA project and the cosmic ray knee problem Yuri V. Stenkin Institute for Nuclear Res. of RAS, Moscow, Russia.
Cosmic Ray Composition Primary cosmic particles collide with atoms in the Earth's atmosphere and produce a cascade of short lived particles, which can.
Measurement of high energy cosmic rays by the new Tibet hybrid experiment J. Huang for the Tibet ASγCollaboration a a Institute of high energy physics,
Scaling behavior of lateral distribution of electrons in EAS
Lecture 18 - Detectors Detector systems
High Energy and Prompt Neutrino Production in the Atmosphere
Recent Results from the new Tibet hybrid experiment
Particle accelerators
TREND workshop agenda 0. Introduction and round-table
Andrea Chiavassa Universita` degli Studi di Torino
Model of quark-gluon blobs and cosmic rays above the knee
Remarks on astrophysical origin of the knee in cosmic ray spectrum
Frank Deppisch, Ralph Engel, Paolo Lipari, James Pinfold
NA61/SHINE: hadron production in p+p/A and A+A interactions at the CERN SPS Antoni Marcinek (Jagiellonian University) for the NA61 collaboration Layout:
Pierre Auger Observatory Present and Future
on behalf of the GAMMA Collaboration
Comparison Of High Energy Hadronic Interaction Models
Comparison Of High Energy Hadronic Interaction Models
Multicore Cosmic Shower in the ARGO-YBJ experiment
Litao Zhao Liaoning University&IHEP
Latest Results from the KASCADE-Grande experiment
Hadronic Interaction Model Analysis Air Shower Development
M.Tamada Kinki University
本田 建 (山梨大学) Knee 領域のEnergy Spectrum
Particle Physics Theory
The Aperture and Precision of the Auger Observatory
Andrea CHIAVASSA and Elena CANTONI Universita` degli Studi di Torino
宇宙線スペクトルと GeV-TeV diffuse-g emission
Muon puzzle in cosmic ray experiments and its possible solution
Studies and results at Pierre Auger Observatory
Presentation transcript:

チャカルタヤ山宇宙線共同実験 玉田雅宣 (近畿大学) 本田 建 (山梨大学) 他Chacaltaya Collaborator

Collaborator M.Tamada5 ,K.Honda1,N.Ohmori3,K.Shinozaki4,N.Inoue4,N.Kawasumi2,N.Ochi, K.Hashimoto2,I.Tsushima2,A.Ohsawa6,H.Aoki7,K.Yokoi8,T.Matano9, N.Martinic10,R.Ticona10,C.Aguirre10 [1]Faculty of Engineering, Yamanashi University, Kofu, 400-8511, Japan [2]Faculty of Education, Yamanashi University, Kofu,400-8510, Japan [3]Faculty of Science, Kochi University, 780-8520, Japan [4]Faculty of Science, Saitama University, 388-8570, Japan [5]Faculty of Science and Technology, Kinki University, 577-8520, Japan [6]Institute for Cosmic Ray Research, University Tokyo, 277-8582, Japan [7]Faculty of Science, Souka University, 192-8577, Japan [8]College of science and Engineering, Aoyama Gakuin University, 157-8572, Japan [9]Shibakubo-cho 3-28-10,Tanashi,188-0014 Japan [10]Institute de Investigaciones Fisicas Universidad Mayor de San Andres, Bolivia

? ?

atmospheric family Eg, Rg Eh(g), Rh atmospheric family (A-jets)

Family intensity QGSJET with EAS sp. gives 3~4 times larger intensity. †proton dominant model [ p(42%),He(17%),CNO(14%),heavy(14%),Fe(13%) at E0=1015eV] †all particles spectrum = EAS data (Tibet, Akeno) QGSJET with EAS sp. gives 3~4 times larger intensity. Violent energy dissipation !?

QGSJET with RUNJOB sp. describes well. †proton dominant model [ p(42%),He(17%),CNO(14%),heavy(14%),Fe(13%) at E0=1015eV] †all particles spectrum = RUNJOB data QGSJET with RUNJOB sp. describes well.

Air-shower array + Emulsion chamber Hybrid experiment Air-shower array + Emulsion chamber

Chacaltaya hybrid experiment (Chacaltaya,5200m) Hadron Calorimeter EAS-array

hadron component in EAS KASCADE T.Antoni et al. J.Phys.G27(2001) 1785, CERN COURIER 42-6(2002) Chacaltaya ESarray+EM ; A.Aguirre et al. PRD62(2000)032003 Models fail to describe hadron number in EAS. strong violation of Feynman scaling law !?

HADRON-M (Tien-Shan, 3340m) Emulsion chamber EAS-array

Tibet ASg (Yangbajing, 4300m) AS-array Tibet ASg (Yangbajing, 4300m) Emulsion chamber Burst detector

EAS triggered family violent energy dissipation Strong violation of Feynman scaling law at E0≥1016eV !?

statistical fluctuation ?? Discrepancy is due to statistical fluctuation ?? All particles : Tibet > RUNJOB Protons, He : Tibet ~ RUNJOB Heavy : Tibet > RUNJOB Tibet data Tibet : PRD62(2000)112002 Proc. ICRC2001,148 Fe(Tibet HD-model) Proton(Tibet HD-model) RUNJOB: Astrop. Phys.16(2001) 13

Cosmic-ray nuclear interaction at E0=1015~1017eV is still far from full understanding. Changes of primary composition alone solve the discrepancies between experimental data and model prediction (Tibet group) ?? There seems no possibility. Changes of nuclear interaction are necessary. Severe energy dissipation etc. (Strong vilation of Feynman Scaling law) Role of exotics ?

Tevatron SppS LHC E0 (eV) 1013 1014 1019 1018 1017 1016 1015 1020 ? emulsion chamber + Air Shower array emulsion chamber Air Shower array C-jets families ‘halo’ families with EAS data EAS beyond GKZ unexplained (exotic) events mild violation of Feynman scaling law strong violation of Feynman scaling law ? QGSJET OK !! ? QGSJET OK ???

future prospect ATHLET

measurement of emulsion chamber data is very time consuming semi-automatic measurement using image-scanner ; successful in Tibet group, (Nucl. Instr. Meth. A523(2004) 193) in progress in Chacaltaya group & Pamir group