Defining Probabilities: Random Variables

Slides:



Advertisements
Similar presentations
JMB Chapter 6 Part 1 v4 EGR 252 Spring 2012 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
Advertisements

JMB Chapter 6 Part 1 v2 EGR 252 Spring 2009 Slide 1 Continuous Probability Distributions Many continuous probability distributions, including: Uniform.
Chapter 4 Mathematical Expectation.
EGR Defining Probabilities: Random Variables Examples: –Out of 100 heart catheterization procedures performed at a local hospital each year, the.
Class notes for ISE 201 San Jose State University
Samples vs. Distributions Distributions: Discrete Random Variable Distributions: Continuous Random Variable Another Situation: Sample of Data.
CONTINUOUS RANDOM VARIABLES. Continuous random variables have values in a “continuum” of real numbers Examples -- X = How far you will hit a golf ball.
Chapter Five Continuous Random Variables McGraw-Hill/Irwin Copyright © 2004 by The McGraw-Hill Companies, Inc. All rights reserved.
Chapter 5 Discrete Random Variables and Probability Distributions
4.1 Mathematical Expectation
Random Variables and Probability Distributions
5-1 Business Statistics: A Decision-Making Approach 8 th Edition Chapter 5 Discrete Probability Distributions.
Chapter 3 Random Variables and Probability Distributions 3.1 Concept of a Random Variable: · In a statistical experiment, it is often very important to.
Chapter 6 Normal Probability Distribution Lecture 1 Sections: 6.1 – 6.2.
1 Lecture 7: Discrete Random Variables and their Distributions Devore, Ch
Continuous probability distributions
6.9 – Discrete Random Variables IBHLY2 - Santowski.
JMB Chapter 5 Part 2 EGR Spring 2011 Slide 1 Multinomial Experiments  What if there are more than 2 possible outcomes? (e.g., acceptable, scrap,
Probability & Statistics I IE 254 Summer 1999 Chapter 4  Continuous Random Variables  What is the difference between a discrete & a continuous R.V.?
Chapter 7 Lesson 7.3 Random Variables and Probability Distributions 7.3 Probability Distributions for Continuous Random Variables.
2.1 Introduction In an experiment of chance, outcomes occur randomly. We often summarize the outcome from a random experiment by a simple number. Definition.
Math b (Discrete) Random Variables, Binomial Distribution.
1 Continuous Probability Distributions Continuous Random Variables & Probability Distributions Dr. Jerrell T. Stracener, SAE Fellow Leadership in Engineering.
JMB Chapter 3 Lecture 1 9th edEGR Slide 1 Chapter 3: Random Variables and Probability Distributions  Definition and nomenclature  A random variable.
The Binomial Distribution
JMB Chapter 3 Lecture 1EGR Spring 2008 Slide 1 Defining Probabilities: Random Variables  Examples:  Out of 100 heart catheterization procedures.
Statistics and Probability Theory Lecture 12 Fasih ur Rehman.
Chapter 5 Joint Probability Distributions and Random Samples  Jointly Distributed Random Variables.2 - Expected Values, Covariance, and Correlation.3.
Random Variables By: 1.
MECH 373 Instrumentation and Measurements
Continuous Random Variable
Random Variables and Probability Distribution (2)
CHAPTER 2 RANDOM VARIABLES.
Uniform Distributions and Random Variables
Continuous Random Variables
4.1 Mathematical Expectation
Aim – How do we analyze a Discrete Random Variable?
Multinomial Experiments
Defining Probabilities: Random Variables
4.1 Mathematical Expectation
Chapter 3: Random Variables and Probability Distributions
Chapter 3: Random Variables and Probability Distributions
Multinomial Experiments
Discrete Probability Distributions
Review for test Ch. 6 ON TUESDAY:
Random Variables Binomial Distributions
Some Discrete Probability Distributions Part 2
Lecture 23 Section Mon, Oct 25, 2004
Statistics Lecture 12.
4.1 Mathematical Expectation
4.1 Mathematical Expectation
Chapter 3: Random Variables and Probability Distributions
Some Discrete Probability Distributions Part 2
Chapter 3: Random Variables and Probability Distributions
Chapter 3: Random Variables and Probability Distributions
Random Variables and Probability Distributions
Chapter 3: Random Variables and Probability Distributions
RANDOM VARIABLES Random variable:
Multinomial Experiments
Multinomial Experiments
Chapter 3: Random Variables and Probability Distributions
Multinomial Experiments
Chapter 3: Random Variables and Probability Distributions
4.1 Mathematical Expectation
Multinomial Experiments
4.1 Mathematical Expectation
Normal Probability Distribution Lecture 1 Sections: 6.1 – 6.2
Mathematical Expectation
Presentation transcript:

Defining Probabilities: Random Variables Examples: Out of 100 heart catheterization procedures performed at a local hospital each year, the probability that more than five of them will result in complications is P(X > 5) Drywall anchors are sold in packs of 50 at the local hardware store. The probability that no more than 3 will be defective is P(Y < 3) P(X > 5) P(Y < 3) a random variable, X, is a function that associates a real number with each element in the sample space and x is one of the values that X can take. JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Discrete Random Variables Problem 2.53 Page 55 Modified Assume someone spends $75 to buy 3 envelopes. The sample space describing the presence of $10 bills (H) vs bills that are not $10 (N) is: S = {NNN, NNH, NHN, HNN, NHH, HNH, HHN, HHH} The random variable associated with this situation, X, reflects the outcome of the experiment X is the number of envelopes that contain $10 X = {0, 1, 2, 3} Note: if the number of possible solutions is countable, the variable is discrete S = {NNN, NNH, NHN, HNN, NHH, HNH, HHN, HHH} X = {0, 1, 2, 3} the probability distribution function (x, f(x)) – see definition 3.4, pg. 66 JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Discrete Probability Distributions 1 The probability that the envelope contains a $10 bill is 275/500 or .55 What is the probability that there are no $10 bills in the group? P(X = 0) =(1-0.55) * (1-0.55) *(1-0.55) = 0.091125 P(X = 1) = 3 * (0.55)*(1-0.55)* (1-0.55) = 0.334125 Why 3 for the X = 1 case? Three items in the sample space for X = 1 NNH NHN HNN P(X=0) = P(not in the 1st envelope ∩ not in the 2nd ∩ not in the 3rd) = (1-275/500)3 = (0.45)3 = 0.09112 P(0) =(1-0.55)^3 = 0.091125 P(1) =3*((0.55)*(1-0.55)^2) = 0.334125 P(2) =3*(0.55^2*(1-0.55)) = 0.408375 P(3) = 0.55^3 = 0.166375 (students fill in the table) JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Discrete Probability Distributions 2 P(X = 0) =(1-0.55) * (1-0.55) *(1-0.55) = 0.091125 P(X = 1) = 3*(0.55)*(1-0.55)* (1-0.55) = 0.334125 P(X = 2) = 3*(0.55^2*(1-0.55)) = 0.408375 P(X = 3) = 0.55^3 = 0.166375 The probability distribution associated with the number of $10 bills is given by: P(X=0) = P(not in the 1st envelope ∩ not in the 2nd ∩ not in the 3rd) = (1-275/500)3 = (0.45)3 = 0.09112 P(0) =(1-0.55)^3 = 0.091125 P(1) =3*((0.55)*(1-0.55)^2) = 0.334125 P(2) =3*(0.55^2*(1-0.55)) = 0.408375 P(3) = 0.55^3 = 0.166375 (students fill in the table) x 1 2 3 P(X = x) JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Example 3.8, pg 80 Shipment: 8 computers of which 3 are defective Random purchase of 2 computers What is the probability distribution for the random variable X = defective computers purchased? Possibilities: X = 0 X =1 X = 2 Let’s start with P(X=0) P = specified target / all possible (0 defectives and 2 nondefectives are selected) (all ways to get 0 out of 3 defectives) ∩ (all ways to get 2 out of 5 nondefectives) (all ways to choose 2 out of 8 computers) (all ways to choose 2 out of 8 computers) P(X = 0) = P(0 defectives and 2 nondefective) = (all ways to get 0 out of 3 defectives) ∩ (all ways to get 2 out of 5 nondefective) (all ways to choose 2 out of 8 computers) (all ways to choose 2 out of 8 computers) JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Discrete Probability Distributions The discrete probability distribution function (pdf) f(x) = P(X = x) ≥ 0 Σx f(x) = 1 The cumulative distribution, F(x) F(x) = P(X ≤ x) = Σt ≤ x f(t) JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Probability Distributions From our example, the probability that no more than 2 of the envelopes contain $10 bills is P(X ≤ 2) = F (2) = _________________ F(2) = f(0) + f(1) + f(2) = .833625  (OR 1 - f(3)) The probability that no fewer than 2 envelopes contain $10 bills is P(X ≥ 2) = 1 - P(X ≤ 1) = 1 – F (1) = ________ 1 – F(1) = 1 – (f(0) + f(1)) = 1 - .425 = .575  (OR f(2) + f(3)) F(2) = f(0) + f(1) + f(2) = .833625  (OR 1 - f(3)) 1 – F(1) = 1 – (f(0) + f(1)) = 1 - .425 = .575  (OR f(2) + f(3)) JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Another View The probability histogram JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Your Turn … The output of the same type of circuit board from two assembly lines is mixed into one storage tray. In a tray of 10 circuit boards, 6 are from line A and 4 from line B. If the inspector chooses 2 boards from the tray, show the probability distribution function associated with the selected boards being from line A. x P(x) 1 2 P(x = 0) = JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Continuous Probability Distributions In general, The probability that the average daily temperature in Georgia during the month of August falls between 90 and 95 degrees is The probability that a given part will fail before 1000 hours of use is Probability density function f(x) JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Visualizing Continuous Distributions The probability that the average daily temperature in Georgia during the month of August falls between 90 and 95 degrees is The probability that a given part will fail before 1000 hours of use is JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Continuous Probability Calculations The continuous probability density function (pdf) f(x) ≥ 0, for all x ∈ R The cumulative distribution, F(x) Example: the uniform distribution (i.e., f(x) = 1, 1 < x < 2) 1. what is the area of the rectangle? (1) The total area under the curve is P(S) and so will always be 1. JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009

Example: Problem 3.7, pg. 88 The total number of hours, measured in units of 100 hours x, 0 < x < 1 f(x) = 2-x, 1 ≤ x < 2 0, elsewhere P(X < 120 hours) = P(X < 1.2) = P(X < 1) + P (1 < X < 1.2) NOTE: You will need to integrate two different functions over two different ranges. b) P(50 hours < X < 100 hours) = Which function(s) will be used? { P(X < 1.2) = P(X < 1) + P (1 < X < 1.2) = ∫01xdx + ∫11.2 (2-x)dx = (x2/2)|01 + (2x- x2/2)|11.2 =0.68 P(.5 < X < 1) = 0.375 JMB Chapter 3 Lecture 1 EGR 252.001 Spring 2009