Fourier-Transform absorption spectroscopy of C3 in the 3 antisymmetric stretch mode region M. VERVLOET, M. A. MARTIN-DRUMEL., D. W. TOKARYK, O. PIRALI ISMO, CNRS-Universite Paris-Saclay, Orsay, France AILES beamline, Synchrotron SOLEIL, Saint-Aubin, France Department of Physics, University of New Brunswick, Fredericton, NB, Canada
Objective: record the (0,n2l,1) - (0,n2l,0) transitions Context C3 is a linear, symmetric molecule 4050 Å band from comet spectra first seen in 1882; assigned to C3 by Douglas (1951) Gausset et al. (1965) studied the A 1Пu – X 1Σg+ electronic system – the analysis revealed a large Renner Teller splitting in the A 1Пu state and low energy (about 65 cm-1) of the X 1Σg+ 2 bending state 3 vib modes (1, 2l, 3), 2 and 3 and IR active: diode laser spectroscopy of the 3 band by Kawaguchi et al, J. Chem. Phys, 91 (1989) and 2 band by Schmuttenmaer et al. 1990 Lines of the 3 band of C3 detected in the circumstellar envelopes (Hinkle et al., Science 1988) and absorption lines of 2 band (Giesen et al., ApJ 2001) Objective: record the (0,n2l,1) - (0,n2l,0) transitions
Experimental set-up on the AILES beamline of SOLEIL Electrical DC discharge coupled to the FT 24 m absorption pathlength Resolution = 100MHz (0.004 cm-1) Discharge : ~ 1KV / 1A Gas mixture : CH4 seeded in 1 mbar He Intense lines are due to CO
Comparison with diode laser spectrum: (0,n2l,1) - (0,n2l,0) (0,2,0) P(40) (0,2,0) R(13) R(14) (0,1,0) P(7) (0,1,0) P(6) Kawaguchi et al. (1989) (0,0,0) P(40) Wavenumbers (cm-1)
Stimulated Emission Pumping Data from electronic transitions to support our analysis In addition to IR data (Kawaguchi et al., Krieg et al.) and ab-initio calculations (Per Jensen) Analysis of the 4050 Ǻ group : A 1Пu – X 1Σg+, L. Gausset et al. Astrophys. J. 142, 45 (1965) (000) , (010), (020), (020), (030) , (040) Stimulated Emission Pumping - Nothrup and Sears (0,2n 2,0) states with l= 0 (), 2 () Rohlfing and Goldsmith (0, 2n+1 2, 1) states with l=1 ()
Spectral analysis procedure and effective Hamiltonian J-1 R(J-1) J J+1 P(J+1) F2(J) for the lower state = R(J-1)-P(J+1) R(J) P(J) F2(J) for the lower state = R(J)-P(J) (0, 2,1) (0, 2,1) USCD (0, 2,0) LSCD (0, 2,0) Formulation from Maki et al, J. Mol. Spec. 36, 433-447 (1970) includes the l-type resonance < J,v,l|H|J,v,l > = Bv[J(J+1) - l2] -Dv [J(J+1) - l2]2 + Hv[J(J+1) - l2]3 < J,v,l|H|J,v,l ± 2> = (1/4)q[(v l)(v ± l + 2]½ {[J(J+1)-l(l ±1)] [J(J+1) – (l ± 1)(l ± 2}½ q → q +qjJ(J+1) + qjjJ2(J+1)2 ±
Analysis (021)-(020); (021) - (020) Extension of Kawaguchi et al observations up to J=55 Plots of the 2(J) for (0,2,1) states shows a local perturbation for J=33-34. Proposition of (190) state as the perturber level. Based on SEP data from Northrup and Sears who observed (180) at 1993 cm-1 2(J) J(J+1)
Analysis of (041) - (040) ; (041) - (040); (041) - (040) Gausset et al. provide term values for (040) state. Northrup and Sears provide low J combination differences for the (040) state Lines involving (040) are more intense than the l=0 and 2 and the l-doubling effect is weaker Analysis of (041) - (040) band rely on the model and fit. 41 lines f levels, Jmax=45 Ev B/cm-1 D/10-5 cm-1 H/10-9 cm-1 q/10-2 cm-1 qJ/10-6 cm-1 (0,4,0) Σ 286.52 0.468074(30) 0.2744(38) 0.133(14) 0.4885(8) -0.3685(31) (0,4,0) Δ 287.250(10) 0.468929(26) 0.2929(27) 0.181(9) (0,4,0) Γ 289.302(11) 0.471883(23) 0.3369(25) 0.200(8) Ev B/cm-1 D/10-5 cm-1 H/10-9 cm-1 q/10-2 cm-1 qJ/10-6 cm-1 (0,4,1) Σ 2260.3657(18) 0.472022(28) 0.3130(37) 0.109(14) 0.5706(8) -0.4848(30) (0,4,1) Δ 2257.3903(97) 0.474334(24) 0.3704(26) 0.214(9) (0,4,1) Γ 2249.312(11) 0.481029(23) 0.5116(25) 0.369(8) 200 lines (, , states); RMS of the fit about 0.003 cm-1 (exp accuracy about 0.0005 cm-1)
Summary (050) R(31) R(33) (050) R(34) (040) R(18) (040) R(21) R(23) (040) (040) R(27) R(26) (030) R(8) R(9) (030) R(14) R(16) R(15) Extension of the analysis to bands involving higher quanta of 2 Comparison with recent theoretical calculations (Schröder and Sebald, J. Chem. Phys 2016) We plan to analyse our data using semi-rigid bender approach (S. Ross, UNB)
Atlas of Comet 122P/de Vico: Cochran and Cochran, Icarus 2002 C3 in cometary spectra: « 4050 Å group » : A1u – X1g+ (Gausset el al. 1965 and Merer 1967) Span from 3350 Å to 4700 Å
Atlas of Comet 122P/de Vico: Cochran and Cochran, Icarus 2002 000 -000 Пu – Σg+ 000 -020 Пu – Σg+ 000 -040 Пu – Σg+ 000 -040 Пu – Δg 020 -020 Пu- – Σg+ 020 -040 Пu- – Σg+ 020 -000 Пu+ – Σg 020 -020 Пu+ – Σg 020 -020 Пu+ – Δg 020 -040 Пu+ – Σg 020 -040 Пu+ – Δg 040 -000 Пu- – Σg+ 040 -020 Пu- – Σ 100 -000 Пu – Σg+ 010 -010 Δg – Пu 010 -030 Δg – Пu 010 -010 Σg- – Пu 010 -030 Σg- – Пu 010 -010 Σg+ – Пu 010 -030 Σg+ – Пu 030 -030 Σg- – Пu
Atlas of Comet 122P/de Vico: Cochran and Cochran, Icarus 2002 Identification of 16 U lines all shifted by 0.3 cm-1 in comparison to lab data 8 for 010 -050 Σg- – Пu 8 for 010 -050 Σg+ – Пu Due to uncertainty of the energy of (051) that we use to determine (050) involved in the cometary band (about 0.5 cm-1) Gausset A (010) Rohlfing X (051) X (050) X (000) THANK YOU!