Micropattern Gas Detectors

Slides:



Advertisements
Similar presentations
General Characteristics of Gas Detectors
Advertisements

Present Status of GEM Detector Development for Position Counter 1.Introduction 2.GEM 3.Readout Board 4.Fabrication Test 5.Large GEM 6.Readout Electronics.
1 MUON TRACKER FOR CBM experiment Murthy S. Ganti, VEC Centre Detector Choice.
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Gas Detector Developments Jin Li. Liquid Xenon case Liquid Xenon can be considered as a gaseous xenon of 520 atm. K.Masuda, S. Takasu, T.Doke et al. (Doke.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
1 VCI, Werner Riegler RPCs and Wire Chambers for the LHCb Muon System  Overview  Principles  Performance Comparison: Timing, Efficiency,
Miyamoto/Shipsey SC LC Retreat 6/27-30/02 Recent activities on Micropatterned Gas Detectors at Purdue Jun Miyamoto and Ian Shipsey Presented for the Santa.
Micro Pattern Gas Detector Technologies and Applications The work of the RD51 Collaboration Marco Villa (CERN), Andrew White (University of Texas at Arlington)
Detector R & D plan Detector Development plan Detector Simulations Conclusion SINP/VECC Meeting High Energy Physics Group, BHU.
C.Shalem et al, IEEE 2004, Rome, October 18 R. Chechik et al. ________________RICH2004_____________ Playa del Carmen, Mexico 1 Thick GEM-like multipliers:
Simulation of the spark rate in a Micromegas detector with Geant4 Sébastien Procureur CEA-Saclay.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
1 The GEM Readout Alternative for XENON Uwe Oberlack Rice University PMT Readout conversion to UV light and proportional multiplication conversion to charge.
Chevron / Zigzag Pad Designs for Gas Trackers
GEM: A new concept for electron amplification in gas detectors Contents 1.Introduction 2.Two-step amplification: MWPC combined with GEM 3.Measurement of.
HIGH RATE BEHAVIOUR AND DISCHARGE LIMITS IN MICRO-PATTERN DETECTORS A. Bressan, M. Hoch, P. Pagano, L. Ropelewski and F. Sauli (CERN, Geneva, Switzerland)
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
5 th RD51 meeting (WG1) 25 May 2009 Atsuhiko Ochi ( Kobe University )
Experimental and Numerical studies on Bulk Micromegas SINP group in RD51 Applied Nuclear Physics Division Saha Institute of Nuclear Physics Kolkata, West.
Atsuhiko Ochi Kobe University
R & D at BHU B.K. Singh (On behalf of HEP Group).
M. Bianco On behalf of the ATLAS Collaboration
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
1/18 01/26/2007MPGD Workshop in Saga (Yorito Yamaguchi, CNS, Univ. of Tokyo) 東大 CNS における GEM の基本動 作特性の研究 Measurement of basic properties of GEM at CNS,
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
RD51 Collaboration: Development of Micro-Pattern Gaseous Detectors technologies Matteo Alfonsi (CERN) on behalf of RD51 Collaboration Current Trends in.
Resistive protections Rui de Oliveira 09/12/15
Summer Student Session, 11/08/2015 Sofia Ferreira Teixeira Summer Student at ATLAS-PH-ADE-MU COMSOL simulation of the Micromegas Detector.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
Simulations of various aspects of the PPS Various members of the collaboration, to be enumerated later.
UTA Digital hadron Calorimetry using the GEM concept J.Li, A.White, J.Yu 5/30/02.
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
Construction and Characterization of a GEM G.Bencivenni, LNF-INFN The lesson is divided in two main parts: 1 - construction of a GEM detector (Marco Pistilli)
T. Zerguerras- RD51 WG Meeting- CERN - February Single-electron response and energy resolution of a Micromegas detector T. Zerguerras *, B.
16 Sept PSD 7 Liverpool 1 MHSP with position detection capability MHSP with position detection capability H. Natal da Luz a,b, J.F.C.A. Veloso a,b,
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Development of μ-PIC with resistive electrodes using sputtered carbon Kobe Univ.,Tokyo ICEPP A F.Yamane, A.Ochi, Y.Homma S.Yamauchi, N.Nagasaka, H.Hasegawa,
Detector Challenges and New Developments in Micro-Pattern Gaseous Detectors Bo Yu Brookhaven National Lab Workshop on Detector R&D, FNAL, Oct. 6-9, 2010.
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
NSCL Proton Detector David Perez Loureiro September 14 th 2015.
R&D activities on a double phase pure Argon THGEM-TPC A. Badertscher, A. Curioni, L. Knecht, D. Lussi, A. Marchionni, G. Natterer, P. Otiougova, F. Resnati,
First results from tests of gaseous detectors assembled from resistive meshes P. Martinengo 1, E. Nappi 2, R. Oliveira 1, V. Peskov 1, F. Pietropaola 3,
An extension of Ramo's theorem to include resistive elements
GEM and MicroMegas R&D Xiaomei Li Science and Technology
Large Prototype TPC using Micro-Pattern Gaseous Detectors
some thoughts on charging-up effects
Part-V Micropattern gaseous detectors
MPGD 2015 Concise Summary Amos Breskin.
RPC working gas (C2H2F4/i-C4H10/SF6): Simulation and measurement
Updates on the Micromegas + GEM prototype
WG1 Task2 New structures, new designs, new geometries
THGEM: Introduction to discussion on UV-detector parameters for RICH
Development of Hard X-ray Detector with GEM
Numerical simulations on single mask conical GEMs
Potential Ion Gate using GEM: experiment and simulation
Numerical simulations on single mask conical GEMs
PHOTON DETECTION AND LOCALIZATION WITH THE
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
Development of GEM at CNS
Development of gating foils using FPC production techniques
réponse d’un détecteur Micromegas
Numerical simulations on single mask conical GEMs
Pre-installation Tests of the LHCb Muon Chambers
(On Behalf of CMS Muon Group)
Micro Resistive Well Detector for Large Area Tracking
Measurements of Stability of Gas Electron Multiplier (GEM)
E. Erdal(1), L. Arazi(2), A. Breskin(1), S. Shchemelinin(1), A
Presentation transcript:

Micropattern Gas Detectors Oleg Bouianov, M.I.T. Cambridge KEK, Tsukuba, 21 February 2004 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Outline Introduction to micropattern gas detectors. MSGC, GEM, MICORMEGAS, MSHP. 3D simulations of gas detectors. Limitations of micropattern detectors. Imperfections of detector fabrication. µPIC, MDOT. New materials and fabrication methods. MIPA. Trends in micropattern detector development. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Processes in Gas Detectors Ionisation Charge Transport Charge Multiplication Signal Formation -0.015 -0.01 -0.005 0.02 0.04 0.06 0.08 0.1 x 10 -5 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

History and introduction to micropattern gas detectors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

MWPC: Multi-Wire Prop. Chamber Georges Charpak Nobel Prize in Physics 1992 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Limitations of MWPC F.Sauli, APS-DPF2000 Counting rate is limited by space charge to ~104 Hz/mm2 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Aging of MWPC Anode wire deposits 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

MSGC: Micro-Strip Gas Chamber A. Oed, NIM A 263 (1988) 351. Drift electrode 200 µm Anode strip Glass support Back plane Cathode strips 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MSGC vs MWPC 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MSGC Dimensions 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MSGC: Discharges FULL BREAKDOWN MICRODISCHARGES F.Sauli, IEEE NSS 2002 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MSGC: Discharges F.Sauli, IEEE NSS 2002 For detection of minimum ionizing tracks a gain ~ 3000 is needed In presence of heavily ionizing particles background, the discharge probability is large ON EXPOSURE TO a PARTICLES 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Aging of MSGC R. Bouclier et al, NIM A381(1996) 289 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MICROMEGAS Thin-gap parallel plate chamber Y. Giomataris et al, Nucl. Instr. and Meth. A376 (1996) 29 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MICROMEGAS 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

GEM: Gas Electron Multiplier F.Sauli, CERN 1997 GEM Dimensions 45μm 75 μm 140 μm 50 μm Copper Kapton 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge GEM operation Particle traversing the detector volume Ionization Drift of primary charges Avalanche multiplication 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Cascaded GEM GEM #1 GEM #2 -0.015 -0.01 -0.005 0.02 0.04 0.06 0.08 0.1 x 10 -5 Pad readout 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Cascaded GEM: Simulated Strengths of simulations: Each electron and ion can be individually traced. Nano-scale study of all major processes. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Features of GEM-based Detectors Flexibility. Charge multiplication and signal formation are separated Gas gain can be optimised by cascading GEMs Freedom in selecting a signal readout geometry Only signal due to electrons is seen. Ion feedback suppression. Inexpensive to manufacture in large area. High-rate operation. Gain uniformity over large detector areas. Stability at high gas gains (cascaded). 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Micro-Hole and Strip Plate (MHSP) A cross between MSGC and GEM J.M. Maia et al., IEEE Trans. Nucl. Sci. NS-49 (3) (2002) 875 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MHSP Operation hv photocathode Features: Double-stage amplification Low ion feedback Low UV photon feedback cathode mesh 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

3D Simulation of Gas Detectors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Why 3D Simulation? 2D: Electric field lines 3D: Field strength 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Why 3D Simulation? 2D: Avalanche 3D: Avalanche and charge sharing 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Simulation Flow Simulation Tools Maxwell FEM 3D Electric Field Simulator Garfield 3D drift chambers simulation Heed gas ionisation by particles Magboltz electron transport properties in gas mixtures Maxwell Garfield 3D Geometry Model Generate Data Charge Transport Magboltz Mesh Generation Gas Data Track Particle Field Calculation Heed Ionisation Data 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

FEM Modelling of e-Field 3D Detector Model Mesh Generation FEM Field Calculation 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

GEM Simulation Studies 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Early effort on GEM simulations Setting up simulation environment (1999). Validation and comparison with published measurement results. O. Bouianov et al., “Progress in GEM simulation”, Nuclear Instruments and Methods in Physics Research A, 450 (2000), 277-287. Study of charge losses. O. Bouianov et al., “Foil geometry effects on GEM characteristics”, Nuclear Instruments and Methods in Physics Research A, 458 (2001), 698-709. Study of gas gain instabilities. O. Bouianov et al., “Charging-up effects in the gas electron multiplier”, Research reports B24, Laboratory of Computational Engineering, Helsinki University of Technology, 2001, ISBN 951-22-5413-1. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Studied geometries (a) cylindrical (b) biconical (c) conical 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Detector modelling Minimisation of detector volume for various hole distribution patterns: (a) hexagonal (b) rectangular 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Study of charge transport in GEM 3D model of GEM. E-field calculation. Gas properties. Primary charge generation. Propagation of charges (with or without diffusion). 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Deposition of charges (losses) 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Modelling of dielectric charging 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Modelling of dielectric charging Distribution of electric potentials in GEM: initial modified by charging 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Comparison with measurements The alteration of the effective gas gain: measured (dots) and simulated (solid curve). R. Bouclier et al., Nucl. Instr. and Meth. A, 396 (1997), 50. time constants 1/ 2 =6 total equivalen resistance R≈150∙109 Ω 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Typical characteristics of gaseous micropattern detectors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Shortcomings of gaseous micropattern devices discharges at high count rates and gains low effective gas gain space-charge effects time-dependent gain variation (dielectric charging) slow response due to ions gain non-uniformity across detector area aging limited energy resolution (>20% E/E FWHM) … 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Discharges in micropattern detectors A. Bressan et al, NIM A 424 (1999) 321 Systematic study of discharges by F.Sauli at CERN. Irradiation: high-rate soft X-rays + heavily ionizing alpha particles. All single-stage micropattern detectors show similar limitation due to discharges at a gain of few thousand. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Imperfections of detector fabrication Fabrication process limitations: Layer-to-layer registration Photolithography errors Isotropic etching process Electrode shape errors (undercut) Dielectric shape errors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge GEM: close look CERN Imperfections of wet etching and RIE. CERN Fuchigami Co 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Modelling of realistic structures The effect of MPGD fabrication imperfections has been studied. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Modelling of realistic structures Smoother electrode structure. Twofold decrease of the field strength. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Fabrication techniques: a comparison of results 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

MDOT: Micro – Dot Chamber A remarkable detector with high gain and low discharge rate Metal electrodes on silicon: microelectronic fabrication process S. Biagi et al, Nucl. Instr. and Meth. A361 (1995) 72 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MDOT performance No discharges observed at high rates with alphas up to the gains 2104 A. Bressan et al, NIM A 424 (1999) 321 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

µPIC: Micro Pixel Chamber New micrpattern detector Developed at Kyoto University Similar to MDOT PCB technology Discharges at gains of few thousand. A. Ochi et al., Nucl. Instr. and Meth. A 471 (2001) 264. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge µPIC vs MDOT µPIC MDOT Technology Advanced PCB Microelectronic Electrode thickness 10 µm ~ 1 µm Feature tolerances > 10 µm ~ 0.5 µm Performance average exceptional Reasons for different performance: Technology imperfections? … T.Nagayoshi, Kyoto group 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

New Materials and Manufacturing Technologies 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Scale-up: “macropattern” LC TPC R&D: LEM or Macro-GEM “Macro-GEM” structure is manufactured and its performance studied at MIT/LNS. Macro-GEM geometry Hole pitch 2.5 mm Max. hole diameter 1.2 mm Min. hole diameter 0.6 mm Copper thickness 50 m Dielectric thickness (G10) 150 m 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Microstructure detectors Scale-down Microstructure detectors 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Photoplastics for MEMS Polyimide Low aspect ratio (< 3:1) ~80 m thick SU-8 epoxy PR – popular material for MEMS microfabrication High UV transparency High aspect ratio (>10:1) Straight walls > 500 m thick spin coated 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Microfabrication with photoplastics Spin coating SU-8 process 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Examples of SU-8 microstructures 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Molding of metal structures Results in precise metal shapes with smooth surfaces. 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Early attempts to produce gas detectors with MEMS techniques 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge MSGC type structures M. Key CNM, Barcelona 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

MIPA: Micro-Pin Array Uses new materials and fabrication processes Matrix of individual needle proportional counters P. Rehak et al, IEEE Trans. Nucl. Sci. NS-47(2000)1426 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

SU-8 Radiation Hardness M. Key CNM, Barcelona 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Not a Conclusion 1928 1988 2000 G e n r a t i o s f g u d c 3 rd generation 2 nd generation 1 s t g e n r a i o 4 × 10 2 3 D e t c o r s l u i n , m 5 50 500 S g d a v 1 st gene- ration 2 nd gene- ration 3 rd gene- ration 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge

Oleg Bouianov, M.I.T. Cambridge Thank you … 21 Feb 2004 Oleg Bouianov, M.I.T. Cambridge