Acceleration of Polarized Protons and Deuterons at HESR/FAIR

Slides:



Advertisements
Similar presentations
Flipping proton and deuteron spins in storage rings L.I. Malysheva.
Advertisements

The Siberian Snake Kai Hock Liverpool Group Meeting, 12 August 2008.
Wilson Lab Tour Guide Orientation 11 December 2006 CLASSE 1 Focusing and Bending Wilson Lab Tour Guide Orientation M. Forster Mike Forster 11 December.
Accelerating Polarized Protons Mei Bai Collider Accelerator Department Brookhaven National Laboratory PHNIX Focus, Feb. 24,
Electron and Ion Spin Dynamics in eRHIC V. Ptitsyn Workshop on Polarized Sources, Targets and Polarimetry Charlottesville, VA, 2013.
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
Ion Polarization Control in MEIC Rings Using Small Magnetic Fields Integrals. PSTP 13 V.S. Morozov et al., Ion Polarization Control in MEIC Rings Using.
RHIC Accelerator Capability: Present and Future Mei Bai Collider Accelerator Dept. BNL.
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Polarized Proton Acceleration and Collisions Spin dynamics and Siberian Snakes Polarized proton acceleration.
Polarized deuterons and protons at NICA А.Коваленко NICA-SPIN_PRAGUE 2013 Charles University, Prague, July 7-12, 2013.
Overview of RHIC Injector Oct. 5, 2015 Haixin Huang MEIC 2015.
Praha- Dubna SPIN2013 Helical magnets Siberian snakes I.Koop, A.Otboyev, P.Shatunov Yu.Shatunov Budker Institute for Nuclear Physics Novosibirsk.
Plans for Polarized Beams at VEPP-2000 and U-70 Yu.Shatunov BINP, Novosibirsk P S IN 2006.
1 Studies of electron cooling at DESY K. Balewski, R. Brinkmann, Ya. Derbenev, Yu. Martirosyan, K. Flöttmann, P. Wesolowski DESY M. Gentner, D. Husmann,
Control of Beam Polarization at the NICA Collider A.M. Kondratenko 2, A.D. Kovalenko 1, M.A. Kondratenko 2, Yu.N. Filatov 1,3 and V.A. Mikhaylov 1 1 Join.
ERHIC with Self-Polarizing Electron Ring V.Ptitsyn, J.Kewisch, B.Parker, S.Peggs, D.Trbojevic, BNL, USA D.E.Berkaev, I.A.Koop, A.V.Otboev, Yu.M.Shatunov,
Design Optimization of MEIC Ion Linac & Pre-Booster B. Mustapha, Z. Conway, B. Erdelyi and P. Ostroumov ANL & NIU MEIC Collaboration Meeting JLab, October.
Polarization in ELIC Yaroslav Derbenev Center for Advanced Study of Accelerators Jefferson Laboratory EIC Collaboiration Meeting, January 10-12, 2010 Stony.
J-PARC Spin Physics Workshop1 Polarized Proton Acceleration in J-PARC M. Bai Brookhaven National Laboratory.
Thomas Roser SPIN 2008 October 10, 2008 The Future of High Energy Polarized Proton Beams Spin dynamics and depolarizing resonances Early multi-GeV polarized.
Thomas Roser Derbenev Symposium August 2-3, 2010 Polarized Beam Acceleration In their seminal paper “Radiative Polarization: Obtaining, Control, Using”
Thomas Roser Snowmass 2001 June 30 - July 21, 2001 Proton Polarimetry Proton polarimeter reactions RHIC polarimeters.
Polarized Proton at RHIC: Status and Future Plan Mei Bai Collider Accelerator Dept. BNL A Special Beam Physics Symposium in Honor of Yaroslav Derbenev's.
1 Polarized Proton Beam Acceleration at Nuclotron with the use of the Solenoid Siberian Snake Yu.N. Filatov 1,3, A.D. Kovalenko 1, A.V. Butenko 1, A.M.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
About polarized protons acceleration at U-70 A.Otboyev, P.Shatunov, Yu.Shatunov BINP, Novosibirsk S.Ivanov, S.Nurushev IHEP, Protvino Dubna Spin-05.
Compensation of Detector Solenoid G.H. Wei, V.S. Morozov, Fanglei Lin JLEIC Collaboration Meeting Spring, 2016.
Thomas Roser SPIN 2006 October 3, 2006 A Study of Polarized Proton Acceleration in J-PARC A.U.Luccio, M.Bai, T.Roser Brookhaven National Laboratory, Upton,
Andreas Jankowiak Institut für Kernphysik Johannes Gutenberg – Universität Mainz A Electron-Nucleon-Collider at the HESR of the FAIR Facility:
Polarization of CEPC M. Bai Collider Accelerator Department Brookhaven National Laboratory, Upton, NY Dec , 2013 International workshop on.
Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes October 2, 2006 SPIN 2006 H. Huang, L.A. Ahrens, M. Bai, A. Bravar, K. Brown,
JLEIC simulations status April 3rd, 2017
Calculation of Beam Equilibrium and Luminosities for
Ion Collider Ring: Design and Polarization
P. Chevtsov for the ELIC Design Team
Deuteron Polarization in MEIC
Large Booster and Collider Ring
Beam polarization in eRHIC
Preservation and Control of Ion Polarization in MEIC
Electron Polarization In MEIC
Possibility for polarized beam at J-PARC Summary of Satellite Workshop on Polarized Proton Beam at J-PARC Satellite Workshop Program: Overview of the status.
BINP Tau-Charm Project
eRHIC with Self-Polarizing Electron Ring
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Polarized Ion Beams with JLEIC
Collider Ring Optics & Related Issues
Electron Rings Eduard Pozdeyev.
JLEIC Ion and Electron Polarization
JLEIC Collaboration meeting Spring 2016 Ion Polarization with Figure-8
Spin Transparency Study and Test
HESR for SPARC 25th November FAIR MAC Dieter Prasuhn.
RHIC Spin Flipper M. Bai, T. Roser Collider Accelerator Department
Update on Alternative Design of jleic ion injector Complex B
Racetrack Booster Option & Initial Spin Tracking Results
Update on MEIC Ion Polarization Work
JLEIC Weekly R&D Meeting
Update on MEIC Ion Polarization Work
Update on MEIC Ion Polarization Work
Yu.N. Filatov, A.M. Kondratenko, M.A. Kondratenko
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
Alternative Ion Injector Design
Compensation of Detector Solenoids
Progress Update on the Electron Polarization Study in the JLEIC
Status of Proton & Deuteron Spin Tracking in Racetrack Booster
HE-JLEIC: Do We Have a Baseline?
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
Current Status of Ion Polarization Studies
Summary and Plan for Electron Polarization Study in the JLEIC
DYNAMIC APERTURE OF JLEIC ELECTRON COLLIDER
Status of RCS eRHIC Injector Design
Presentation transcript:

Acceleration of Polarized Protons and Deuterons at HESR/FAIR 28-30 May 2009 | Andreas Lehrach

Content Introduction Spin dynamics Acceleration of Polarized Beams Methods for preserve polarization Acceleration of Polarized Beams Spin resonances in SIS18 and HESR Measures for polarized protons and deuterons Extension for Polarized Beams

Spin Dynamics in Circular Accelerators Thomas-BMT Equation (Thomas [1927], Bargmann, Michel, Telegdi [1959]): Lab system Number of spin rotations per turns: Imperfection resonance: Field and positioning errors of magnets Resonance strength ~ yrms  Vertical closed orbit correction  Partial Snake Intrinsic resonance: Vertical focusing fields Resonance strength ~√εy  Vertical tune jump  Vertical coherent betatron oscillation P: Super-periodicity Qy: Vertical tune k: integer

Methods for Polarization Preservation < 5 GeV: Conventional methods  Correcting dipoles  Tune-jump quadrupoles 5 - 10 GeV: Adiabatic spin-flip  Partial snake  AC dipole > 10 GeV: Full Siberian snake ZGS, COSY, ELSA, … AGS RHIC

Imperfection resonances Siberian Snake cos(180 νsp) = cos(/2) · cos(180 γG) Full:  = 180°  νsp = ½ All spin resonances except snake resonances Partial:  < 180°  νsp ≠ k Imperfection resonances Magnet system for snakes: Longitudinal fields (solenoids) for low energies Transversal fields (dipoles) for higher energies

Preliminary Scheme for ENC at FAIR Scheme of the ENC@FAIR for electron-proton collisions Contribution to the Particle Accelerator Conference, Vancouver, 2009

Proton Spin Resonances in SIS18 Acceleration to HESR injection: 369 MeV/c (70 MeV) – 3.8 GeV/c (3.0 GeV) Imperfection: 6 2 (464 MeV/c) , 3 (1.26 GeV/c), 4 (1.87 GeV/c), 5 (2.44 GeV/c), 6 (3.00 GeV/c), 7 (3.51 GeV/c) Correction: Acceleration rate 1 GeV/c per 0.05s  3% partial snake (0.5 Tm solenoid) Intrinsic (P=12, Qy=3.28): 1 0+ (1.44 GeV/c) 12- (4.47 GeV/c) Correction: Depending on beam emittance 20 mm mrad (norm.): R = 3·10-3  AC dipole 1 mm mrad (norm.): R < 10-3  Tune-jump quadrupole

Proton Spin Resonances in HESR Imperfection: 25 4, 5, 6, ... , 28 Strong: 8, 16, 24 Intrinsic (P=1, Qy=7.61): 50 21-, 22-, ... , 45- -3+, -4+, ..., 11+ Strong: 0+, 44- Coupling: 50 Correction: Full Siberian Snake

Magent System of the Electron Cooler Compensation Solenoids Cooler Solenoid Skew Quadrupoles Quadrupoles 4.8 Tm 24 m 7.5 Tm Toroid Correcting Dipoles Toroid X: 1.07 mrad at 1.5 GeV/c Inner Steerer X: - 1.40 mrad at 1.5 GeV/c Outer Steerer X: 1.70 mrad at 1.5 GeV/c Y: 23.01 mrad at 1.5 GeV/c Y: -30.29 mrad at 1.5 GeV/c Y: 0.06 mrad at 1.5 GeV/c In Collaboration with Y.M. Shatunov et al. (BINP Novosibirsk) Integral magnetic field : ~20Tm Required for full Siberian snake: 60 Tm (Proc. of SPIN 2004)

Siberian Snake for HESR RHIC Helix dipole snake 4 superconducting helix: 4T, 2 m length with almost 360 twist of conductors Helixdipol Helixdipol und Solenoid

Siberian Snake for HESR Solenoid Helix dipole HESR: 4 helix dipole (2.5 T) and 15 Tm solenoid In Collaboration with A.U. Luccio, BNL

HESR Layout Straight sections: cooler and target section Momentum range: 1.5 – 15 GeV/c Straight sections: cooler and target section Ring circumference: 574 m Siberian Snake Stochastic Cooling 12

Polarized Protons vs. Deuterons Polarization states: (2S+1)  3 states for Spin 1 Vector polarization: Pz = (n+-n-) / (n++n-+n0) Pzmax = ±1 Tensor polarization: Pzz = (1-3n0) / (n++n-+n0) Pzzmax = 1, -2 Gyromagnetic anomaly: Gp / Gd = -12.6 Spin tune: γp Gp / γd Gd= -25.2 Spin resonance strength: 13 (low energies) to 25 (high energies) times weaker 25 times further apart Strength of spin resonances: same for vector and tensor polarization Siberian snake: much stronger magnetic fields

Deuteron Spin Resonances SIS18: 0 No imperfection resonance No intrinsic resonance One weak gradient error resonance 3- (3.16 GeV/c) No Correction needed HESR: 3 Imperfection resonance: –1 (13.0 GeV/c) Intrinsic resonances: –8+ (4.76 GeV/c), 7- (7.78 GeV/c) Two weak coupling resonances Correction: Partial snake, tune-jump quads No longitudinal polarized beam!

Spin Tune with Partial Snake Partial Snake for HESR Spin Tune with Partial Snake Full Siberian snake for protons ONLY 20% partial snake for deuterons Move working point close to integer  .90 < Qfrac < .10 like in the AGS

Extension for Polarized Protons and Deuterons Polarized ion sources (CIPIOS-type) Acceleration via p-Linac or UNILAC Several polarimeter (at least three) Systems for spin preservation Protons  correction system for SIS18 (space available?, 2 times 0.5 m needed)  Full Siberian snake for HESR (space reserved) Deuterons  Partial snake and tune-jump quads for HESR No longitudinal polarized beam