Business Statistics, 4e by Ken Black

Slides:



Advertisements
Similar presentations
Discussion Sampling Methods
Advertisements

Categories of Sampling Techniques n Statistical ( Probability ) Sampling: –Simple Random Sampling –Stratified Random Sampling –Cluster Random Sampling.
Topic 7 Sampling And Sampling Distributions. The term Population represents everything we want to study, bearing in mind that the population is ever changing.
11 Populations and Samples.
Determining the Sample Plan
© 2002 Thomson / South-Western Slide 7-1 Chapter 7 Sampling and Sampling Distributions.
Probability Sampling.
Sampling Concepts Population: Population refers to any group of people or objects that form the subject of study in a particular survey and are similar.
Sample Design.
McGraw-Hill/Irwin McGraw-Hill/Irwin Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved.
Learning Objective Chapter 11 Basic Sampling Issues CHAPTER eleven Basic Sampling Issues Copyright © 2000 by John Wiley & Sons, Inc.
Chapter 7: Sampling and Sampling Distributions. LO1Contrast sampling to census and differentiate among different methods of sampling, which include simple,
Sampling: Theory and Methods
Sampling Methods. Definition  Sample: A sample is a group of people who have been selected from a larger population to provide data to researcher. 
Learning Objectives Copyright © 2004 John Wiley & Sons, Inc. Basic Sampling Issues CHAPTER Ten.
Basic Sampling & Review of Statistics. Basic Sampling What is a sample?  Selection of a subset of elements from a larger group of objects Why use a sample?
1 Hair, Babin, Money & Samouel, Essentials of Business Research, Wiley, Learning Objectives: 1.Understand the key principles in sampling. 2.Appreciate.
Business Statistics: Contemporary Decision Making, 3e, by Black. © 2001 South-Western/Thomson Learning 7-1 Business Statistics, 3e by Ken Black Chapter.
Learning Objectives Copyright © 2002 South-Western/Thomson Learning Basic Sampling Issues CHAPTER twelve.
1 1 Slide STATISTICS FOR BUSINESS AND ECONOMICS Seventh Edition AndersonSweeneyWilliams Slides Prepared by John Loucks © 1999 ITP/South-Western College.
Sampling & Sampling Distributions Chapter 7 MSIS 111 Prof. Nick Dedeke.
Learning Objectives Explain the role of sampling in the research process Distinguish between probability and nonprobability sampling Understand the factors.
Sampling & Sampling Distributions Chapter 7 MSIS 111 Prof. Nick Dedeke.
Chapter 10 Sampling: Theories, Designs and Plans.
Chapter Ten Copyright © 2006 John Wiley & Sons, Inc. Basic Sampling Issues.
McGraw-Hill/IrwinCopyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. SAMPLING Chapter 14.
5-1 Biostatistics CHS 221 by Dr. WajedHatamleh lecture 7&8 Sampling &Sampling Distributions Dr. wajed Hatamleh.
Learning Objectives Determine when to use sampling. Determine the pros and cons of various sampling techniques. Be aware of the different types of errors.
Topics Semester I Descriptive statistics Time series Semester II Sampling Statistical Inference: Estimation, Hypothesis testing Relationships, casual models.
Chapter 2 STATISTICAL CONCEPTS AND LANGUAGE 2.1 THE DIFFERENCE BETWEEN THE POPULATION AND A SAMPLE 2.2THE DIFFERENCE BETWEEN THE PARAMETER AND A STATISTICS.
Institute of Professional Studies School of Research and Graduate Studies Selecting Samples and Negotiating Access Lecture Eight.
Chapter Ten Basic Sampling Issues Chapter Ten.
Chapter 14 Sampling.
Chapter 9 Selecting the Sample.
Sampling.
Sampling and the Sampling Distribution
Social Research Methods
RESEARCH METHODS Lecture 28
Part Two THE DESIGN OF RESEARCH
Business Statistics, 4e by Ken Black
Sampling Designs and Sampling Procedures
Sampling Methods and the Central Limit Theorem
Sampling Methods. Sampling Methods Reasons for Sampling Sampling can save money. Sampling can save time. Statistical Methods Reasons for Sampling Sampling.
Graduate School of Business Leadership
Developing the Sampling Plan
Population and samples
SAMPLE DESIGN.
Meeting-6 SAMPLING DESIGN
Sampling: Design and Procedures
Sampling: Theory and Methods
Social Research Methods
Slides by JOHN LOUCKS St. Edward’s University.
Sampling: Design and Procedures
Lecture 6: Primary Data Collection and Sampling
Welcome.
Basic Sampling Issues.
Sampling Design.
Chapter 7 Sampling Distributions
Selecting Research Participants
Unit 4 Sampling Techniques.
CHAPTER eleven Basic Sampling Issues
Sampling Design Basic concept
Sampling Designs and Sampling Procedures
Sampling Methods.
BUSINESS MARKET RESEARCH
Chapter 7 Sampling and Sampling Distributions
Sample Designs and Sampling Procedures
Social Research Methods
Metode Penelitian Pertemuan 10.
Presentation transcript:

Business Statistics, 4e by Ken Black Chapter 7 Sampling & Sampling Distributions Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons.

Learning Objectives x  p Determine when to use sampling instead of a census. Distinguish between random and nonrandom sampling. Decide when and how to use various sampling techniques. Be aware of the different types of error that can occur in a study. Understand the impact of the Central Limit Theorem on statistical analysis. Use the sampling distributions of and . x  p Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 2

Reasons for Sampling Sampling can save money. Sampling can save time. For given resources, sampling can broaden the scope of the data set. Because the research process is sometimes destructive, the sample can save product. If accessing the population is impossible; sampling is the only option. Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 3

Reasons for Taking a Census Eliminate the possibility that a random sample is not representative of the population. The person authorizing the study is uncomfortable with sample information. Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 4

Population Frame A list, map, directory, or other source used to represent the population Overregistration -- the frame contains all members of the target population and some additional elements Example: using the chamber of commerce membership directory as the frame for a target population of member businesses owned by women. Underregistration -- the frame does not contain all members of the target population. Example: using the chamber of commerce membership directory as the frame for a target population of all businesses. Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 5

Random Versus Nonrandom Sampling Every unit of the population has the same probability of being included in the sample. A chance mechanism is used in the selection process. Eliminates bias in the selection process Also known as probability sampling Nonrandom Sampling Every unit of the population does not have the same probability of being included in the sample. Open the selection bias Not appropriate data collection methods for most statistical methods Also known as nonprobability sampling Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 6

Random Sampling Techniques Simple Random Sample Stratified Random Sample Proportionate Disportionate Systematic Random Sample Cluster (or Area) Sampling Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 7

Simple Random Sample Number each frame unit from 1 to N. Use a random number table or a random number generator to select n distinct numbers between 1 and N, inclusively. Easier to perform for small populations Cumbersome for large populations Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 8

Simple Random Sample: Numbered Population Frame 01 Alaska Airlines 02 Alcoa 03 Ashland 04 Bank of America 05 BellSouth 06 Chevron 07 Citigroup 08 Clorox 09 Delta Air Lines 10 Disney 11 DuPont 12 Exxon Mobil 13 General Dynamics 14 General Electric 15 General Mills 16 Halliburton 17 IBM 18 Kellog 19 KMart 20 Lowe’s 21 Lucent 22 Mattel 23 Mead 24 Microsoft 25 Occidental Petroleum 26 JCPenney 27 Procter & Gamble 28 Ryder 29 Sears 30 Time Warner Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 9

Simple Random Sampling: Random Number Table 9 4 3 7 8 6 1 5 2 N = 30 n = 6 Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 10

Simple Random Sample: Sample Members 01 Alaska Airlines 02 Alcoa 03 Ashland 04 Bank of America 05 BellSouth 06 Chevron 07 Citigroup 08 Clorox 09 Delta Air Lines 10 Disney 11 DuPont 12 Exxon Mobil 13 General Dynamics 14 General Electric 15 General Mills 16 Halliburton 17 IBM 18 Kellog 19 KMart 20 Lowe’s 21 Lucent 22 Mattel 23 Mead 24 Microsoft 25 Occidental Petroleum 26 JCPenney 27 Procter & Gamble 28 Ryder 29 Sears 30 Time Warner N = 30 n = 6 Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 11

Stratified Random Sample Population is divided into nonoverlapping subpopulations called strata A random sample is selected from each stratum Potential for reducing sampling error Proportionate -- the percentage of thee sample taken from each stratum is proportionate to the percentage that each stratum is within the population Disproportionate -- proportions of the strata within the sample are different than the proportions of the strata within the population Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 12

Stratified Random Sample: Population of FM Radio Listeners 20 - 30 years old (homogeneous within) (alike) 30 - 40 years old 40 - 50 years old Hetergeneous (different) between Stratified by Age Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 13

Systematic Sampling Convenient and relatively easy to administer Population elements are an ordered sequence (at least, conceptually). The first sample element is selected randomly from the first k population elements. Thereafter, sample elements are selected at a constant interval, k, from the ordered sequence frame. k = N n , where : sample size population size size of selection interval Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 14

Systematic Sampling: Example Purchase orders for the previous fiscal year are serialized 1 to 10,000 (N = 10,000). A sample of fifty (n = 50) purchases orders is needed for an audit. k = 10,000/50 = 200 First sample element randomly selected from the first 200 purchase orders. Assume the 45th purchase order was selected. Subsequent sample elements: 245, 445, 645, . . . Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 15

Cluster Sampling Population is divided into nonoverlapping clusters or areas Each cluster is a miniature, or microcosm, of the population. A subset of the clusters is selected randomly for the sample. If the number of elements in the subset of clusters is larger than the desired value of n, these clusters may be subdivided to form a new set of clusters and subjected to a random selection process. Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 16

Cluster Sampling Advantages More convenient for geographically dispersed populations Reduced travel costs to contact sample elements Simplified administration of the survey Unavailability of sampling frame prohibits using other random sampling methods Disadvantages Statistically less efficient when the cluster elements are similar Costs and problems of statistical analysis are greater than for simple random sampling Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 17

Cluster Sampling Grand Forks Portland Fargo Buffalo Boise Pittsfield San Jose Boise Phoenix Denver Cedar Rapids Buffalo Louisville Atlanta Portland Milwaukee Kansas City San Diego Tucson Grand Forks Fargo Sherman- Dension Odessa- Midland Cincinnati Pittsfield Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 18

Nonrandom Sampling Convenience Sampling: sample elements are selected for the convenience of the researcher Judgment Sampling: sample elements are selected by the judgment of the researcher Quota Sampling: sample elements are selected until the quota controls are satisfied Snowball Sampling: survey subjects are selected based on referral from other survey respondents Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 19

Errors Data from nonrandom samples are not appropriate for analysis by inferential statistical methods. Sampling Error occurs when the sample is not representative of the population Nonsampling Errors Missing Data, Recording, Data Entry, and Analysis Errors Poorly conceived concepts , unclear definitions, and defective questionnaires Response errors occur when people so not know, will not say, or overstate in their answers Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 20

Sampling Distribution of x Proper analysis and interpretation of a sample statistic requires knowledge of its distribution. Process of Inferential Statistics Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons. 21

Distribution of a Small Finite Population Population Histogram 1 2 3 52.5 57.5 62.5 67.5 72.5 Frequency N = 8 54, 55, 59, 63, 68, 69, 70 Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons.

Sample Space for n = 2 with Replacement Mean 1 (54,54) 54.0 17 (59,54) 56.5 33 (64,54) 59.0 49 (69,54) 61.5 2 (54,55) 54.5 18 (59,55) 57.0 34 (64,55) 59.5 50 (69,55) 62.0 3 (54,59) 19 (59,59) 35 (64,59) 51 (69,59) 64.0 4 (54,63) 58.5 20 (59,63) 61.0 36 (64,63) 63.5 52 (69,63) 66.0 5 (54,64) 21 (59,64) 37 (64,64) 53 (69,64) 66.5 6 (54,68) 22 (59,68) 38 (64,68) 54 (69,68) 68.5 7 (54,69) 23 (59,69) 39 (64,69) 55 (69,69) 69.0 8 (54,70) 24 (59,70) 64.5 40 (64,70) 67.0 56 (69,70) 69.5 9 (55,54) 25 (63,54) 41 (68,54) 57 (70,54) 10 (55,55) 55.0 26 (63,55) 42 (68,55) 58 (70,55) 62.5 11 (55,59) 27 (63,59) 43 (68,59) 59 (70,59) 12 (55,63) 28 (63,63) 63.0 44 (68,63) 65.5 60 (70,63) 13 (55,64) 29 (63,64) 45 (68,64) 61 (70,64) 14 (55,68) 30 (63,68) 46 (68,68) 68.0 62 (70,68) 15 (55,69) 31 (63,69) 47 (68,69) 63 (70,69) 16 (55,70) 32 (63,70) 48 (68,70) 64 (70,70) 70.0 Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons.

Distribution of the Sample Means Sampling Distribution Histogram 5 10 15 20 53.75 56.25 58.75 61.25 63.75 66.25 68.75 71.25 Frequency Business Statistics, 4e, by Ken Black. © 2003 John Wiley & Sons.